Яндекс.Метрика

Проекции топографических карт

Опубликовано topogis в

Сферическую поверхность развернуть на плоскости без разрывов и складок невозможно, то есть ее плановое изображение на плоскости нельзя представить без искажений, с полным геометрическим подобием всех ее очертаний. Полного подобия спроектированных на уровенную поверхность очертаний островов, материков и различных объектов можно добиться лишь на шаре (глобусе). Изображение поверхности Земли на шаре (глобусе) обладает равномасштабностью, равноугольностью и равновеликостью. Эти геометрические свойства одновременно и полностью сохранить на карте невозможно. Построенная на плоскости географическая сетка, изображающая меридианы и параллели, будет иметь определенные искажения, поэтому будут искажены изображения всех объектов земной поверхности. Характер и размеры искажений зависят от способа построения картографической сетки, на основе которой составляется карта.

Картографическая проекция — это отображение поверхности эллипсоида или шара на плоскости.

Существуют различные виды картографических проекций. Каждому из них соответствуют определенная картографическая сетка и присущие ей искажения. В одном виде проекции искажаются размеры площадей, в другом – углы, в третьем – площади и углы. При этом во всех проекциях без исключения искажаются длины линий.

Картографические проекции классифицируют по характеру искажений, виду изображения меридианов и параллелей (географической сетке) и некоторым другим признакам.

По характеру искажений различают следующие картографические проекции:

  • равноугольные, сохраняющие равенство углов между направлениями на карте и в натуре. На карте с такой проекцией картографическая сетка сохраняет свойство равноугольности. А ткже сохранено подобие углов, но высажены размеры площадей. Например, площади Гренландии и Африки на карте почти одинаковы, а в действительности площадь Африки примерно в 15 раз больше площади Гренландиию;
  • равновеликие, сохраняющие пропорциональность площадей на карте соответствующим площадям на земном эллипсоиде. На таких картах сохранена пропорциональность всех площадей, но искажено подобие фигур, то есть отсутствует равноугольность. Взаимная перпендикулярность меридианов и параллелей на такой карте сохраняется только по среднему меридиану;
  • равнопромежуточные, сохраняющие постоянство масштаба по какому-либо направлению;
  • произвольные, не сохраняющие ни равенства углов, ни пропорциональности площадей, ни постоянства масштаба. Смысл применения этих проекций заключается в более равномерном распределении искажений на карте и удобстве решения некоторых практических задач.

По виду изображения сетки меридианов и параллелей картографические проекции подразделяются на конические, цилиндрические, азимутальные и др. Причем в пределах каждой из этих групп могут быть разные по характеру искажений проекции (равноугольные, равновеликие и др).

Геометрическая сущность конических и цилиндрических проекций заключается в том, что сетка меридианов и параллелей проектируется на боковую поверхность конуса или цилиндра с последующим развертыванием этих поверхностей в плоскость. Геометрическая сущность азимутальных проекций заключается в том, что сетка меридианов и параллелей проектируется на плоскость, касательную к шару в одном из полюсов или секущую по какой-либо параллели.

Картографическую проекцию, наиболее подходящую по характеру, величине и распределению искажений для той или иной карты, выбирают в зависимости от назначения, содержания карты, а также от размеров, конфигурации и географического положения картографируемой территории.

Благодаря картографической сетке все искажения, как бы велики они не были, сами по себе не влияют на точность определения по карте географического положения (координат) изображаемых на ней объектов. В то же время картографическая сетка, являясь графическим выражением проекции, позволяет при измерениях на карте учитывать характер, величину и распределение искажений. Поэтому любая географическая карта представляет собой математически определенное изображение земной поверхности.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *