Инженерно геодезические работы при строительстве автодорог

Геодезические работы при строительстве автомобильных дорог

Дорожное строительство неотъемлемо связано с целым комплексом геодезических работ, которые посредством измерений, вычислений и выносу в натуре данных, позволяют обеспечить точность и правильность положения всех объектов инфраструктуры.

Строительство — это возведение зданий и сооружений, а также их капитальный и текущий ремонт, реконструкция, реставрация и реновация. Процесс строительства включает в себя все организационные, изыскательские, проектные, строительно-монтажные и пусконаладочные работы, связанные с созданием, изменением или сносом объекта, а также взаимодействие с компетентными органами по поводу производства таких работ.

Строительство дорог — это многоэтапный сложный процесс, который включает в себя в обязательном порядке в соответствии с техзаданием: ‒ выбор материалов и выполнение комплекса замеров; ‒ демонтаж при наличии старого покрытия; ‒ укладку основания в несколько уровней, обеспечивающего высокий уровень амортизации и прочности; ‒ использование современных механизмов и специальной техники; ‒ проверка качества покрытия на соответствие ГОСТу и СНиП.

Геодезические работы при строительстве дорог начинают с детальной разбивки её оси по материалам предыдущего трассирования. При этом восстанавливают утраченные пикеты, углы поворота и главные точки круговых кривых. Выполняют детальную разбивку кривых одним из известных способов. Кроме того, производят контрольное нивелирование по пикетажу и плюсовым точкам, разбивают, при необходимости, дополнительные поперечные профили. После выполнения указанных работ трассу окончательно закрепляют на местности знаками, располагаемыми вне зоны земляных работ, и сгущают сеть рабочих реперов из расчета : 1 репер на 4-5 пикетов трассы.
В зависимости от условий местности и положения проектной линии трассы выполняют разбивку земляного полотна дороги для различных случаев положения проектного и поперечного профилей трассы. Разбивка земляного полотна производится с учётом обустройства проезжей части, обочин, откосов и кюветов, соблюдением проектных уклонов в продольном и поперечном направлениях. Поперечные уклоны необходимы для обеспечения отвода воды в том и другом направлениях от оси дороги либо в одном каком-либо направлении, а также для обеспечения необходимой устойчивости движущегося на закруглениях транспорта. Поперечные уклоны не должны отличаться от проектных не более, чем на 0,030.
Исполнительная геодезическая съёмка выполняется после возведения земляного полотна и после окончательного строительства дороги. Цена на геодезию в строительстве дорог может варьироваться в зависимости от задач.

По теме:  Жители сельской местности на приусадебных участках

Трассирование линейных объектов.

Необходимость трассирования линейных объектов чаще всего возникает при проектировании крупных траcс инженерных сетей: газопровода, водопровода, канализационных систем, линий cвязи. Это очень трудоемкая и сложная работа, которая состоит в предварительном выборе конкурентоспособных вариантов трассы, согласовании ее местонахождения, выносе оси в натуру с закреплением главных точек трассы. Данный вид изысканий подразумевает полный комплекс работ, которые выполняются для выбора самого оптимального положения линейного объекта на определенной местности.

При трассировании производится маршрутная аэрофотосъемка, планово- высотная геодезическая привязка, полевое и камеральное дешифрирование аэрофотоснимков. В местах расположения трассовых объектов, водостоков, оврагов, дорог, подземных коммуникаций и других различных препятствий производится крупномасштабная инженерно-топографическая съемка. В зависимости от природных условий, вида территории и своеобразных характеристик трассы устанавливается ширина полосы съемки, которая обычно составляет около 200–300 м.

Результатом топографо-геодезических работ является составление ситуационного плана полосы трассы, инженерно-топографического плана пересечений трассы и ее сложных участков, а также полное описание продольного и поперечного профиля на всех плюсовых и пикетных точках. После того, как происходит согласование и окончательное утверждение варианта трассы, производится вынос оси трассы в натуру с закреплением створных точек, углов поворота, реперов и других основных объектов. При завершении работ производится исполнительная съемка для проверки качества всех выполненных строительных и земляных работ. Спутниковая связь и современное оборудование, а также программное обеспечение позволяет полевым бригадам выполнять работы практически в любых условиях, а также оперативно передавать материалы для обработки в офисы компаний.

Нивелирные работы при прокладке трассы.

Обработка журнала нивелирования производится в следующем порядке. Вначале вычисляют превышения между связующими точками (пикетами) для всех станций нивелирного хода. Превышение h на каждой станции находят как разность заднего а и переднего b отсчетов по рейкам: h=а-b При этом получают два значения превышения: h — из отсчетов по черным сторонам реек; h» — из отсчетов по красным сторонам реек. Из этих значений рассчитывают среднее значение превышения.

Вычислив средние превышения на всех станциях и записав результаты, выполняют постраничный контроль. Для этого выполняют следующее: Получить суммы задних отсчетов по рейкам ∑а и по передним рейкам ∑b. Также получить суммы вычисленных ∑hвыч и средних ∑hср превышений: Получить разность сумм отсчета ∑а–∑b по задним и передним рейкам: В результате постраничного контроля должно выполняться условие: ∑а–∑b = ∑hвыч = 2*∑hср 1) ∑а–∑b =9923=2*4962 2) ∑а–∑b =8974=2*4488 3) ∑а–∑b =-3215=2*(-1606)

Если это условие выполняется, то все расчеты верны, в противном случае следует все пересчитать. Управление превышения нивелирного хода. Контролем полевых измерений и вычислений является невязка. Величина фактической невязки по абсолютной величине не должна превышать значения допустимой невязки: f h ≥ f h доп При выполнении данного условия измерения, выполненные при прокладке нивелирного хода, считают качественными и пригодными для дальнейшей обработки, в противном случае измерения повторяют.

Вычисление уравненных превышений. Следующим этапом камеральной обработки нивелирного хода является уравнивание превышений. Для этого величину фактической невязки распределяют с противоположным знаком поровну на все станции, т. е. рассчитывают поправку в каждое превышение: Значение поправки вычисляют с точностью до 1 мм. Если невязка не делится нацело на количество станций хода, полученный остаток по 1 мм распределяют на любые произвольно выбранные превышения. Величины поправок записывают со своими знаками над соответствующими им приращениями. Сумма всех поправок должна быть равна невязке с обратным знаком.

После определения поправок находят абсолютные отметки всех связующих точек хода. Контролем правильности вычислений абсолютных отметок связующих пикетов является совпадение вычисленного и заданного значений абсолютной отметки конечного репера. На последнем этапе вычислений для всех станций нивелирного хода, где есть промежуточные точки, определяют абсолютные отметки этих точек. Для этого вначале на каждой из этих станций находят значения горизонта прибора (ГП), представляющее собой абсолютную отметку горизонтального визирного луча нивелира, которым брались отсчеты по рейкам.

Продольный профиль автомобильной дороги

Продольный профиль автомобильной дороги — это условное изображение разреза автомобильной дороги вертикальной плоскостью, проходящей через её ось. Продольный профиль показывает: рельеф поверхности земли по оси дороги; положение линии бровки земляного полотна относительно дороги; грунтовой разрез по оси дороги; размещение искусственных сооружений.

Построение продольного фактического профиля трассы. Профиль продольного нивелирования является одним из главных геодезических документов при вертикальной съемке и служит основой для проектирования по нему трасс автомобильных и железных дорог и других линейных сооружений и коммуникаций. Студенты составляют профиль по результатам своих вычислений абсолютных отметок пикетов и промежуточных точек, выполненных в журнале нивелирования. Составление профиля производят на миллиметровой бумаге формата 55х80 см в данной последовательности. В нижней половине листа строят сетку профиля, состоящую из семи горизонтальных граф и содержащую всю необходимую числовую и графическую информацию.

Принимают горизонтальный масштаб равным 1:2000. В графе «Расстояния» вертикальными штрихами наносят в данном масштабе все пикеты и промежуточные точки. Затем указывают длину каждого отрезка между штрихами, т. е. расстояние между каждыми двумя соседними точками нивелирного хода. В графе «номер пикета» указываю номера пикетов хода у соответствующих или вертикальных штрихов. Далее, из журнала нивелирования выписываются в графу «Отметки земли» абсолютные отметки всех пикетов и промежуточных точек. Отметки округляют до 0,01 м и записывают напротив соответствующих им вертикальных штрихов в графе «Расстояния». На расстоянии 1 см выше от сетки профиля проводят линию условного горизонта и подписывают ее отметку. Отметку условного горизонта выбирают так, чтобы самая низкая точка профиля расположилась выше линии условного горизонта на 5–7 см, т. е. отметка линии условного горизонта должна быть на 5–7 м меньше минимальной отметки хода.

Вертикальный масштаб принимают равным 1:200. Перпендикулярно линии условного горизонта в точке, соответствующее ПК0, строят шкалу вертикального масштаба (шкалу отметок) высотой 8–10 см. Эта шкала имеет ширину 2 мм и вычерчивается в виде черных и белых прямоугольников, раскрашенных в шахматном порядке. Возле шкалы вертикального масштаба подписывают ее отметки. Наносят на профиль все пикеты и промежуточные точки. Для этого проводят вертикальные линии, соответствующие штрихам в графе «Расстояния», и на каждой из них в вертикальном масштабе откладывают отметку данной точки. Все нанесенные по отметкам точки последовательно соединяют отрезками прямых линий и получают линию профиля.

После составления профиля продольного нивелирования необходимо подготовить по данному профилю проект трассы автомобильной дороги. Дорогу проектируют с условием, чтобы отметка ее полотна на пикетах ПК0 и ПК10 совпадала с отметками этих пикетов. Составление проекта трассы автодороги включает в себя следующие этапы: — нанесение проектной линии; — вычисление проектных уклонов на всех участках проектной линии; — определение отметок проектной линии на пикетах и промежуточных точках; — расчет рабочих отметок; — нахождений расстояний до точек нулевых работ и проектных отметок этих точек; проектную линию наносят на существующий профиль продольного нивелирования, руководствуясь следующим;

а) объем земляных работ должен быть минимальным; б) объем выемки и насыпи на всем профиле должны быть примерно равными; в) уклон проектной линии оси автодороги не должен превышать величины 0,05; г) проектная линия может состоять из нескольких участков, имеющих различный уклон, но границы этих участков должны совпадать с отвесными линиями, проходящими через пикеты или промежуточные точки; д) между участками проектной линии, имеющими уклоны с противоположными знаками, обязательно должен быть горизонтальный участок длиной не менее 100 м.. Величину уклона i каждого участка проектной линии вычисляют по формуле i=h/d,где h– превышение между концами линии на данном участке (определяется графически по профилю); d– горизонтальное проложение линии.

Источник

Глава 8. Геодезические работы при изыскании и строительстве автомобильных дорог

8.1. Понятие о трассе

Автомобильные дороги относятся к инженерным сооружениям линейного вида — линейные сооружения.

Трассой называется ось проектируемого линейного сооружения, обозначенного на местности, карте, фотоплане или мате-матической модели местности.

Основные элементы трассы:

План трассы — проекция трассы на горизонтальную плоскость.

Профиль трассы — сечение поверхности Земли отвесной плоскостью, проходящей через концы отрезков трассы, т.е. это проекция трассы на отвесную плоскость.

В плане трасса состоит из прямолинейных участков разного направления, сопрягающихся между собой кривыми постоянного и переменного радиуса кривизны (см. рис. 8.1).

В продольном профиле трасса состоит из прямолинейных участков различного уклона, сопрягающихся вертикальными круговыми кривыми. В продольном профиле трасс вертикальный масштаб обычно делают в 10 раз крупнее, чем горизонтальный (для наглядности изображения). Профили поперечников составляют в крупном масштабе (одинаковом горизонтальном и вертикальном), например, 1 : 100.

Основные требования к трассе — плавность и безопасность движения с расчётными скоростями и нагрузками, которые устанавливаются техническими условиями на проектирование трассы. В связи с этим на дорожных трассах устанавливаются

максимально допустимые (руководящие) уклоны и минимально возможные радиусы кривых (см. табл. 8.1).

Рис. 8.1. План трассы автомобильной дороги:

НТ, КТ начало и конец трассы, ВУ — вершины углов поворота, S — длины горизонтальных проложений расстояний между основными точками трассы (НТ, ВУ, КТ), К — длины кривых (круговых и переходных) на трассе, Р — длины прямолинейных участков трассы (прямые вставки), β — правые углы теодолитного хода, θ — поворотные углы трассы.

Наименование основных параметров автодорог

К а т е г о р и и

8.2. Круговые и переходные кривые на трассе

Круговая кривая — дуга окружности определённого радиуса, назначаемого в зависимости от условий местности и категории дороги (рис. 8.2).

Рис. 8.2. Элементы круговой кривой

Основными элементами круговых кривых являются:

— угол поворота θтрассы,определяемый по результатам измерений на местности правых углов β теодолитного хода (см. рис. 8.1), прокладываемого по трассе,

радиус круговой кривойR, назначаемый в зависимости от от условий местности и категории дороги (см. табл. 8.1),

кривая К длина дуги (НК-СК-КК) окружности радиуса R,

тангенс Т — длина касательной от вершины угла ВУ поворота трассы до начала и конца кривой,

биссектриса Б — длина биссектрисы угла θ между вершиной угла и серединой (СК) круговой кривой,

Формулы вычисления основных элементов круговых кривых:

(8.1)

На дорожных трассах прямолинейные участки и круговые кривые сопрягаются переходными кривыми, с помощью которых обеспечивается плавный переход движущегося транспорта от прямолинейного участка на круговую кривую и наоборот.

Уравнения переходных кривых выведены из условия, чтобы в каждой текущей точке её величина виража уравновесила действие возникающей центробежной силы.

, (8.2)

где ρ — радиус кривизны от доR;S — длина переходной кривой от её начала до текущей точки; Cconst, параметр, назначается в зависимости от расчётной скорости движения транспорта и принятого уклона для разгона переходной кривой

, (8.3)

a — расстояние между кромками проезжей части дороги, — уклон виража,— превышение наружной кромки над внутренней, которая изменяется от0 м в начальной точке переходной кривой до в конце её и распределяется пропорционально расстоянию ,— ускорение силы тяжести Земли.

Виды переходных кривых: кубическая парабола (рис. 8.3) — применяется при небольших длинах переходных кривых, лемниската Бернулли (рис. 8.4), радиоидальная спираль (рис. 8.5).

Рис. 8.3. Кубическая парабола Рис. 8.4. Лемниската Бернулли

Уравнению переходной кривой наиболее полно удовлетворяет клотоида (радиоидальная спираль), прямоугольные координаты x и y текущей точки вычисляют по формулам:

(8.3)

(8.4)

Рис. 8.5. Радиоидальная спираль — клотоида:

— угол между осью абсцисс и касательной к кривой в текущей точке N, S — длина кривой от её начала до текущей точки, — переменный радиус переходной кривой,x, y — прямоугольные координаты текущей точки N.

Расчёт элементов переходных кривых

При вставке переходных кривых AD и A’D'(рис. 8.6) круговая кривая К (см. рис. 8.2) с каждого из концов укорачивается на половину длины переходной кривой L и угол поворота трассы θ уменьшается на величину . Часть смещается к центру 0, уменьшая радиус R на величину p,называемуюсдвижкой круговой кривой. Поэтому устройство переходных кривых возможно только при условии, если или.

Величину сдвижки определяют по формуле

. (8.5)

Рис. 8.6. Вставка переходной кривой:

R — радиус круговой кривой, θ — угол поворота трассы, 0 — центр круговой кривой, t — дополнение к тангенсу,

Расстояние tмежду началом (НПК) переходной кривой и началом (НКК) круговой кривой, называемое дополнением к тангенсу, равно приблизительно половине длины переходной кривой, точнее

. (8.6)

Начало (НПК) первой и конец (КПК) второй переходной кривой находят на местности отложением соответственно от начала (НКК) и конца (ККК) круговой кривой расстояния t или от ближайших пикетов по их пикетажному наименованию

, . (8.7)

Переходные кривые со смещённым центром

Чтобы при вставке переходных кривых не уменьшать радиус R круговой кривой на величину сдвижки p, необходимо сдвинуть центр 0 круговой кривой вдоль биссектрисы угла поворота θ трассы на величину

. (8.8)

В этом случае тангенс круговой кривой получит приращение

(8.9)

и общий тангенс от вершины угла до начала переходной кривой будет равен

, (8.10)

а биссектриса сдвинутой кривой

. (8.11)

Домер сдвинутой кривой вычисляют из выражения

, (8.12)

где общая длина круговой и переходной кривых.

Источник

ТОПоГИС