7.4. Распределение жизни в биосфере
Жизнь любого организма во всех формах ее проявления возможна только при постоянном взаимодействии с окружающей средой, которую составляет неорганическая и органическая природа. Как уже отмечалось, неорганическая среда биосферы подразделяется на атмосферу, гидросферу и литосферу и распределяются живые организмы по этим средам жизни довольно неоднородно (рис. 7.4.1). Некоторые организмы приспособились к какой-то одной среде: рыбы, ракообразные, моллюски, водоросли – к водной; земляные черви, личинки насекомых, грибы, бактерии – к почвенной. Но чаще всего жизнедеятельность многих органических форм проходит на границах сред или они в течение жизненного цикла переходят из одной среды в другую. Наземные растения живут и в почве (корни), и в воздушной среде (стебли и листья). Многие насекомые, как например, капустная совка во взрослом состоянии (бабочка) пребывает в наземно-воздушной среде, а куколка переживает низкие зимние температуры в почве. У лягушек в начале жизненного цикла, головастик живет исключительно в водной среде, а взрослые особи переходят к обитанию на суше.
Таким образом, максимальная концентрация живого вещества наблюдается там, где все три неорганические среды биосферы – почва, воздух и вода близко соседствуют друг с другом – в почве, т.е. пограничном слое между литосферой и атмосферой, в поверхностных слоях океана, на дне водоемов и, особенно на литорали, в лиманах и эстуариях рек.
Места наибольшей концентрации организмов в биосфере В.И.Вернадский назвал «пленкой жизни». В настоящее время на земле существует по одним оценкам около 1,5 млн., по другим около 2 млн. видов животных и около 500 тысяч видов сосудистых растений. По Н.И.Базилевичу, Л.Е. Родину, Н.Н. Розову (1971) основную часть биомассы суши составляют зеленые растения (99,2%), а в океане – животные (93,7%).
Как же распределяется жизнь в атмосфере, гидросфере и литосфере?
Атмосфера — наружная газообразная оболочка Земли, простирающаяся до высоты 100 км. Основные ее компоненты – азот (78%), кислород (20,95%), аргон (0,93%), углекислый газ (диоксид углерода) (0,03%). Атмосфера является отчасти продуктом жизнедеятельности организмов, так как кислород в атмосфере появляется в результате деятельности фотосинтезирующих организмов – цианобактерий и растений. На высоте 15-50 км расположен озоновый слой, который защищает поверхность планеты от избытка ультрафиолетовых лучей, неблагоприятно влияющих на живые организмы. На высоте 25-27 км большую часть ультрафиолетового излучения Солнца озоновый слой поглощает и поэтому все живое, попадающее выше защитного слоя, погибает.
И хотя, специфических организмов, которые всю свою жизнь были бы связаны только с воздухом нет, они все, особенно наземные и почвенные, тесно с ним связаны. В воздушной среде значительную часть своей жизни проводят птицы и насекомые. В воздухе в определенные периоды находятся семена растений, бактерии, споры грибов, простейшие и их цисты. Обычно они не поднимаются выше 50-100 м над поверхностью земли, но споры некоторых бактерий и плесневых грибов были обнаружены на высоте до 22 км. Условно это и будет верхняя часть биосферы.
Если же взять зеленые растения и их распространение по вертикали, то они не поднимаются в горы выше, чем на 6 200 м (выше не идет процесс фотосинтеза). Тем не менее, выше зоны растений в горах встречаются пауки, клещи, которые питаются органическими частицами, пыльцой растений заносимой туда ветрами, а также споры некоторых организмов и бактерии.
Гидросфера — покрывает Землю на 2/3, остальное занято сушей. На суше гидросфера представлена фрагментарно — озерами, реками, грунтовыми водами (табл. 7.4.1). Абсолютное большинство водных масс в гидросфере (94%) состоит из морской воды, а вклад рек в водный бюджет планеты в 10 раз меньше, чем количество водных паров в атмосфере. Три четверти пресной воды недоступны организмам, так как законсервированы в ледниках гор и полярных шапках Арктики и Антарктиды.
Особенностью водной среды является то, что гидробионты заселяют всю ее толщу — от поверхности пленки до глубин в океанических впадинах до 11 000 км.
Таблица 7.4.1. Распределение водных масс в гидросфере Земли
Научная электронная библиотека
Хамзина Ш. Ш., Жумабекова Б. К.,
6.2. Распространение живого вещества в биосфере. Границы биосферы. Человек с точки зрения законов эволюции
Основной особенностью биосферы является наличие в ней живого вещества – совокупности всех живых организмов, представляющих собой мощную геологическую силу. Под их влиянием происходит преобразование лика Земли. Они участвуют в образовании различных минеральных пород, пресной воды, атмосферы. Все живые организмы являются преобразователями солнечной энергии и влияют на геологические процессы. В биосфере происходит непрерывный круговорот различных веществ, благодаря деятельности живых организмов. Но поскольку биосфера получает энергию извне, то она является открытой системой. Неживой компонент биосферы – это те части трех геологических оболочек Земли, которые связаны с живым веществом биосферы сложными процессами миграции вещества и энергии.
В.И. Вернадский определил биосферу как термодинамическую оболочку с температурой от –50 до +50 градусов и давлением около 1 атмосферы. Эти условия и определяют границы жизни для большинства организмов.
Биосфера занимает пространство от озонового экрана, где на высоте 20 км встречаются споры бактерий и грибов, до глубины более 3 км под земной поверхностью и около 2 км под дном океана. Там, в водах месторождений нефти, обнаруживаются анаэробные бактерии. Самая большая концентрация биомассы сосредоточена на границах раздела геосфер, т.е. в прибрежных и поверхностных водах океана и на поверхности суши. Это объясняется тем, что источником энергии биосферы является солнечный свет, и аутотрофные, а за ними и гетеротрофные организмы, в основном, заселяют места, где солнечная радиация наиболее интенсивна.
На поверхности Земли в настоящее время полностью лишены живых существ лишь области обширных оледенений и кратеры вулканов.
В.И. Вернадский указывал на «всюдность» жизни в биосфере. Об этом свидетельствует история нашей планеты. Жизнь появилась в воде и затем распространилась на поверхности, заняв в той или иной степени все оболочки Земли. Распространение жизни в оболочках биосферы, по мнению В.И. Вернадского, еще не закончилось. На это указывают масштабы приспособляемости живых организмов.
Масса живого вещества составляет лишь 0,01 % от массы всей биосферы. Тем не менее, живое вещество биосферы – это главнейший ее компонент.
Важнейшим свойством живого вещества является способность к воспроизводству и распространению по планете. Живое вещество распространено в биосфере неравномерно: пространства, густо заселенные организмами, чередуются с менее заселенными территориями.
Наибольшая концентрация жизни в биосфере наблюдается на границах соприкосновения земных оболочек: атмосферы и литосферы (поверхность суши), атмосферы и гидросферы (поверхность океана), гидросферы и литосферы (дно океана), и особенно на границе трех оболочек – атмосферы, литосферы и гидросферы (прибрежные зоны). Эти места наибольшей концентрации жизни В.И. Вернадский назвал «пленками жизни». Вверх и вниз от этих поверхностей концентрация живой материи уменьшается.
Вмешательство человека, так или иначе, нарушает процессы круговорота. Например, вырубка лесов или повреждение ассимиляционного аппарата растений промышленными выбросами приводит к снижению интенсивности усвоения углерода. Избыток органических элементов в воде вследствие поступления в неё промышленных стоков приводит к эвтрофикации водоёмов и перерасходу растворенного в воде кислорода, что исключает возможность существования здесь аэробных организмов. Сжигая ископаемое топливо, фиксируя атмосферный азот в продуктах производства, связывая фосфор в детергентах, человек как бы замыкает на себя круговорот элементов, что нередко вынуждает его полностью управлять химией окружающей среды.
Человечество резко ускорило круговорот некоторых веществ. Месторождения железа, меди, цинка, свинца и многих других элементов, которые природа копила в течение миллионов лет, быстро вычерпываются. С другой стороны осуществляется концентрация элементов в таких пропорциях, которых не было в природе (на промышленном производстве).
Человек очень быстрыми темпами использует солнечную энергию, накопленную в угле, нефти, природном газе за счет прошлого биосферы. Все это ведет к увеличению неупорядоченности в биосфере. Человек не только ускоряет биологический круговорот, но и привлекает в него те элементы, которые были из него давно исключены.
В целом в биосфере под влиянием деятельности человека все быстрее снижается энтропия за счет увеличения энтропии земной коры (сжигание горючих полезных ископаемых, рассеивание металлических полезных ископаемых и т.п.). Поэтому, необходимо как можно меньше изменять природные процессы, в частности внедрять безотходные производства или качественно новые производственные циклы, но и в идеальном случае не удастся избавиться, скажем, отходов тепла, так как это противоречит законам термодинамики.
8. Понятие биосферы. Структура и границы биосферы и ее составных частей.
Биосферой называют совокупность всех живых организмов нашей планеты и те области геологических оболочек Земли, которые заселены живыми существами и подвергались в течение геологической истории их воздействию.
Газовая оболочка складывается в основном с азота и кислорода. В невеликих количествах в ей удерживается диоксид углерода (0,03%) и озон. Состояние атмосферы оказывает большое влияние на физические, химические и биологические процессы на поверхности Земли и в водной среде. Для биологических процессов наибольшая значимость имеют: кислород, используемый для дыхания и минерализации мертвого органического вещества, диоксид углерода, который участвует в фотосинтезе, и озон, экранирующий земную поверхность от твердого ультрафиолетового излучения. Азот, диоксид углерода, пары воды образовались в значительной меры благодаря вулканической деятельности, а кислород — в результате фотосинтеза.
Биологический спектр структуры биосферы имеет ступенчатый характер: сообщество, популяция, организм, орган, клетка, ген.
Живые организмы неравномерно распространены в геологических оболочках Земли: литосфере, гидросфере и атмосфере Поэтому биосфера сейчас включает верхнюю часть литосферы, всю гидросферу и нижнюю часть атмосферы.
Литосфера — это верхняя твердая оболочка Земли. Ее толщина колеблется в пределах 50–200 км. Распространение жизни в ней ограниченно и резко уменьшается с глубиной. Подавляющее количество видов сосредоточено в верхнем слое, имеющем толщину в несколько десятков сантиметров. Некоторые виды проникают в глубину на несколько метров или десятков метров (роющие животные — кроты, черви; бактерии; корни растений). Наибольшая глубина, на которой были обнаружены некоторые виды бактерий, составляет 3–4 км (в подземных водах и нефтеносных горизонтах). Распространению жизни вглубь литосферы препятствуют различные факторы. Проникновение растений невозможно из-за отсутствия света. Для всех форм жизни существенными препонами служат и возрастающие с глубиной плотность среды и температура. В среднем температурный прирост составляет около 3 °С на каждые 100 м. Именно поэтому нижней границей распространения жизни в литосфере считают трехкилометровую глубину, (где температура достигает около +100 °С).
Гидросфера — водная оболочка Земли, представляет собой совокупность океанов, морей, озер и рек. В отличие от литосферы и атмосферы она полностью освоена живыми организмами. Даже на дне Мирового океана, на глубинах около 12 км, были обнаружены разнообразные виды живых существ (животные, бактерии). Однако основная масса видов обитает в гидросфере в пределах 150–200 м от поверхности. Это связано с тем, что до такой глубины проникает свет. А следовательно, в более низких горизонтах невозможно существование растений и многих видов, зависящих в питании от растений. Распространение организмов на больших глубинах обеспечивается за счет постоянного «дождя» экскрементов, остатков мертвых организмов, падающих из верхних слоев, а также хищничества. Гидробионты обитают как в пресной, так и в соленой воде и по месту обитания делятся на 3 группы:
1) планктон — организмы, живущие на поверхности водоемов и пассивно передвигающиеся за счет движения воды;
2) нектон — активно передвигающиеся в толще воды;
3) бентос — организмы, обитающие на дне водоемов или зарывающиеся в ил.
Атмосфера — газовая оболочка Земли, имеющая определенный химический состав: около 78 % азота, 21 — кислорода, 1 — аргона и 0,03 % углекислого газа. В биосферу входят лишь самые нижние слои атмосферы. Жизнь в них не может существовать без непосредственной связи с литосферой и гидросферой. Крупные древесные растения достигают нескольких десятков метров в высоту, располагая вверх свои кроны. На сотни метров поднимаются летающие животные — насекомые, птицы, летучие мыши. Некоторые виды хищных птиц поднимаются на 3–5 км над поверхностью Земли, высматривая свою добычу. Наконец, восходящими воздушными потоками пассивно заносятся на десятки километров вверх бактерии, споры растений, грибов, семена. Однако все перечисленные летающие организмы или занесенные бактерии лишь временно находятся в атмосфере. Нет организмов, постоянно живущих в воздухе.
Верхней границей биосферы принято считать озоновый слой, располагающийся на высоте от 30 до 50 км над поверхностью Земли. Он защищает все живое на нашей планете от мощного ультрафиолетового солнечного излучения, в значительной мере поглощая эти лучи. Выше озонового слоя существование жизни невозможно.
Таким образом, основная часть видов живых организмов сосредоточена на границах атмосферы и литосферы, атмосферы и гидросферы, образуя относительно «тонкую пленку жизни» на поверхности нашей планеты.
Концепция акад. В.И.Вернадского о биосфере.
В связи с усилившимися негативными последствиями воздействия научно-технического прогресса на природную среду, обострением планетарной экологической ситуации, что ставит под угрозу дальнейшее существование всего живого на земле, обостряется научный и общественный интерес к учению В.И. Вернадского о биосфере, к его фундаментальным трудам.
Как определял Вернадский, биосфера – это область существования на земле «живого вещества», т.е. совокупности всех живых организмов. Она включает в себя нижнюю (тропосферную) часть атмосферы, всю гидросферу и верхнюю часть литосферы.
В.И. Вернадский доказал, что как бы слаб ни был каждый организм в отдельности, все они, вместе взятые, на протяжении длительного отрезка времени выступают как мощный геологический фактор, играющий существенную роль в жизни планеты. Геологическая деятельность живых организмов проявляется как следствие следующих их особенностей: они теснейшим образом связаны с окружающей средой и взаимодействуют с ней в процессе обмена веществом и энергией; обмен веществ организмов со средой осуществляется в процессе биологического круговорота; суммарный эффект результатов деятельности организмов проявляется на протяжении очень длительных (сотен миллионов лет) отрезков времени.
Биосфера – это очень сложно устроенная внешняя оболочка Земли, населенная живыми организмами. Она качественно отличается от других ее оболочек.
В пределах биосферы проявляется тесная взаимосвязь и геологическая деятельность всех живых существ: растений, животных, микроорганизмов, а на последнем историческом этапе становления Земли – и человека.
Научно-философские изыскания В.И. Вернадского также были направлены на выявление механизмов взаимодействия «живого вещества» с окружающей неживой природой, биогеохимическим и геохимическими циклами элементов в биосфере, выявление геохимических полей «устойчивости жизни» или «пределов жизни».
Нарушение «пределов жизни», которые могут повлечь за собой гибель живых организмов, вызываются как естественными природными (избыток или недостаток химических элементов, геомагнитные поля, радиоактивные излучения, вулканические извержения и др.) так и искусственными антропогенными воздействиями (вредные газовые выбросы, пестициды, удобрения, тяжелые металлы, сточные воды предприятий, твердые отходы, мусор и др.). Так, недостаток некоторых элементов питания в почве, особенно микроэлементов, приводит к резкому снижению продуктивности сельскохозяйственных культур и устойчивости к неблагоприятным абиотическим и биотическим факторам.
К естественным факторам глобальных воздействий на биосферу следует отнести геофизические и космические факторы (геомагнитные поля, космические излучения).
Периодически возникающие вспышки на Солнце возмущают геомагнитное поле Земли, приводят к магнитным бурям, которые отрицательно влияют на состояние человека. В периоды магнитных бурь или так называемых «неблагоприятных дней» ухудшается состояние больных людей, страдающих сердечно-сосудистыми заболеваниями, гипертонией, возрастает число сосудистых кризов.
Естественные ионизирующие факторы среды также оказывают сильное влияние на биосферу. По мнению ряда исследователей, на планете существуют так называемые радиоактивные провинции, которые характеризуются повышенным содержанием радиоактивных веществ во внешней среде. Такие провинции известны в США, Франции, Индии, России. Максимальной радиоактивностью характеризуются торфяники болотистой Хибинской тундры, и почти в 3 раза ниже активность пустынного серозема.
Основные типы вещества биосферы. Свойства и функции живого вещества.
1. Живое вещество – живые организмы, населяющие нашу планету.
Количественное определение живого вещества – биомасса выражается в единицах массы или энергии. Общая биомасса планеты Земли составляет 2,4·10 12 т, причем на суше на биомассу растений приходится 99,2% (животных 0,8%). Соотношение биомассы мирового океана 93,7% животные и микроорганизмы 6,3% — зеленые растения.
2. Косное вещество – неживые тела, в его образовании живое вещество не участвует (магматические горные породы).
3. Биогенное вещество – неживое вещество, которое образуется в процессе жизнедеятельности организмов на протяжении геологической истории (торф, уголь, нефть, известняки, газы биогенного происхождения и т.д.).
В синтезе биогенного вещества участвуют биогенные химические элементы. Биогенные элементы – химические элементы, постоянно входящие в состав организмов и необходимые им для жизнедеятельности (их около 20): О2(70% от массы организмов), С (18% от массы организмов), Н (10% от массы организмов), N, Ca, K, P, Mg, S, Cl, Na и др.
4. Биокосное вещество – результат совместной деятельности живых организмов и геологических процессов (почвы, ил ,воды, кора выветривания и др.).
5. Радиоактивное вещество – атомы радиоактивных элементов (уран 238, 235, торий 232, радий 266, калий 40, кальций 48, углерод 40 и др.).
6. Рассеянные атомы – отдельные атомы элементов, встречающиеся в природе в рассеянном состоянии (в таком виде часто существуют атомы микро- и ультрамикроэлементов: Mn, Co, Zn, Cu, Au, Hg и др).
7. Вещество космического происхождения – поступает на поверхность Земли из космоса (метеориты, космическая пыль).
По данным, основанными на содержание энергии или углерода, живое биогенное и биокосное вещества в биосфере находятся в соотношениях: 1: 20 : 4000
Хотя живое вещество и составляет незначительную часть от массы всей биосферы (0,01%) оно является главнейшим ее компонентом, т.к. оно наиболее активное:
— участвует в образовании биогенных и биокосных веществ;
— создает и изменяет биосферу, проникая во все ее элементы.
Различают ряд биологических функций живого вещества, которые играют исключительно важную роль в атмосферных и почвенных процессах, главнейшими из которых являются:
— энергетическая (биохимическая) – связывание и запасание солнечной энергии и последующее рассеяние энергии при потреблении и минерализации органического вещества. В основе этой функции лежит фотосинтез зеленых растений, в процессе которого происходит аккумуляция и перераспределение солнечной энергии между компонентами биосферы;
— газовая – способность изменять и поддерживать определенный газовый состав биосферы. Преобладающая масса газов на Земле имеет биогенное происхождение (О, СО2, сероводород, метан и др.);
— концентрационная – извлечение и накопление живыми организмами биогенных элементов. Разные организмы в разной степени способны аккумулировать из среды обитания различные элементы, например: железобактерии накапливают железо, хвощи, диатомовые водоросли – кремний, губки – йод и т.д., причем концентрация химических элементов в организмах превышают их содержание в окружающей среде на несколько порядков.
Результат концентрационной функции – образование залежей горючих ископаемых, известняков, рудных месторождений т.п.
— окислительно-восстановительная – химическое превращение в основном веществ, содержащих атомы с переменной валентностью (Fe, Mn, Cr, S, P, N, W), создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование сероводорода и т.п.
— деструктивная – разрушение (разложение) организмами и продуктами их жизнедеятельности, остатков органического вещества и костных веществ. Наиболее существенную роль выполняют редуценты (деструкторы) — сапрофитные грибы и бактерии.
Свойства биосферы. Связь их с законом Эшби и с принципами Ле-Шателье-Брауна. Причины устойчивости биосферы.
Биосфере, как и составляющим ее другим экосистемам более низкого ранга, присуща система свойств, которые обеспечивают ее функционирование, саморегулирование, устойчивость и другие параметры. Рассмотрим основные из них.
1. Биосфера — централизованная система. Центральным звеном ее выступают живые организмы (живое вещество). Это свойство всесторонне раскрыто В. И. Вернадским, но, к сожалению, часто не дооценивается человеком и в настоящее время: в центр биосферы или ее звеньев ставится только один вид — человек (антропоцентризм).
2. Биосфера — открытая система. Ее существование немыслимо без поступления энергии извне. Она испытывает воздействие космических сил, прежде всего солнечной активности. Впервые представления о влиянии солнечной активности на живые организмы (гелиобиология) разработаны А. Л. Чижевским (1897-1964), который показал, что многие явления на Земле и в биосфере тесно связаны с активностью солнца. Все больше накапливается данных, свидетельствующих, что резкое увеличение численности отдельных видов или популяций («волны жизни») — результат изменения солнечной активности. Высказываются мнения, что солнечная активность оказывает воздействие на многие геологические процессы (катаклизмы, катастрофы), а также на социальную активность человеческого общества или отдельных его этносов.
В частности, есть сторонники той точки зрения, что серия аномальных явлений, имевших место, например, в 1989 году, связана с высокой солнечной активностью. На протяжении только 1,5-2 месяцев наблюдались такие аномальные явления, как землетрясение на острове Итуруп, авария на продуктопроводе в районе Челябинска, гибель атомной подводной лодки «Комсомолец», события в Тбилиси, активизация военных действий в Нагорном Карабахе и др.
3. Биосфера — саморегулирующаяся система, для которой, как отмечал В. И. Вернадский, характерна организованность. В настоящее время это свойство называют гомеостазом, понимая под ним способность возвращаться в исходное состояние, гасить возникающие возмущения включением ряда механизмов. Гомеостатические механизмы связаны в основном с живым веществом, его свойствами и функциями, рассмотренными выше. Биосфера за свою историю пережила ряд таких возмущений, многие из которых были значительными по масштабам, и справлялась с ними (извержения вулканов, встречи с астероидами, землетрясения, горообразование и т. п.) благодаря действию гомеостатических механизмов и, в частности, принципа, который в настоящее время носит название Ле Шателье-Брауна: при действии на систему сил, выводящих ее из состояния устойчивого равновесия, последнее смещается в том направлении, при котором эффект этого воздействия ослабляется.
Опасность современной экологической ситуации связана прежде всего с тем, что нарушаются многие механизмы гомеостаза и принцип Ле Шателье-Брауна, если не в планетарном, то в крупных региональных планах. Их следствие — региональные кризисы. В стадию глобального кризиса биосфера, к счастью, еще, по-видимому, не вступила. Но отдельные крупные возмущения она уже гасить не в силах. Результатом этого является либо распад экосистем (например, расширяющиеся площади опустыненных земель), либо появление неустойчивых, практически лишенных свойств гомеостаза систем типа агроценозов или урбанизированных (городских) комплексов. Человечеству, к сожалению, отпущен крайне малый промежуток» времени для того, чтобы не произошел глобальный кризис и следующие за ним катастрофы и коллапс (полный и необратимый распад системы).
4. Биосфера — система, характеризующаяся большим разнообразием. Разнообразие — важнейшее свойство всех экосистем. Биосфера как глобальная экосистема характеризуется максимальным среди других систем разнообразием. Последнее обусловливается многими причинами и факторами. Это и разные среды жизни (водная, наземно-воз-душная, почвенная, организменная); и разнообразие природных зон, различающихся по климатическим, гидрологическим, почвенным, биотическим и другим свойствам; и наличие регионов, различающихся по химическому составу (геохимические провинции); и, самое главное, объединение в рамках биосферы большого количества элементарных экосистем со свойственным им видовым разнообразием.
В настоящее время описано около 2 млн. видов (примерно 1,5 млн. животных и 0,5 млн. растений). Полагают, однако, что число видов на Земле в 2-3 раза больше, чем их описано. Не учтены многие насекомые и микроорганизмы, особенно в тропических лесах, глубинных частях океанов и в других малоосвоенных местообитаниях. Кроме этого, современный видовой состав — это лишь небольшая часть видового разнообразия, которое принимало участие в процессах биосферы за период ее существования. Дело в том, что каждый вид имеет определенную продолжительность жизни (10-30 млн. лет), и поэтому с учетом постоянной смены и обновления видов число видов, принимавших участие в становлении биосферы, исчисляется сотнями миллионов. Считается, что к настоящему времени арену биосферы оставили более 95% видов.
Разнообразие биосферы за счет элементарных экосистем по вертикали обусловливается ярусностью или экогоризонтами растительного покрова и связанных с ними животных организмов, а в горизонтальном направлении неравномерностью распределения организмов и их группировок и связанных с ними факторов (увлажнение, микрорельеф, обеспеченность элементами питания и т. п.).
Для любой природной системы разнообразие — одно из важнейших ее свойств. С ним связана возможность дублирования, подстраховки, замены одних звеньев другими (например, на видовом или популяционном уровнях), степень сложности и прочности пищевых и других связей. Поэтому разнообразие рассматривают как основное условие устойчивости любой экосистемы и биосферы в целом. Это свойство настолько универсально, что сформулировано в качестве закона (автор его У. Р. Эшби).
Средообразующая роль живого вещества в биосфере.
Средообразующая функция состоит в трансформации физико-химических параметров среды (литосферы, гидросферы, атмосферы) в условия, благоприятные для существования организмов. Можно сказать, что она является совместным результатом всех рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья биологического круговорота; деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для организмов элементов.
Средообразующие функции живого вещества создали и поддерживают в равновесии баланс вещества и энергии в биосфере, обеспечивая стабильность условий существования организмов, в том числе человека. Вместе с тем живое вещество способно восстанавливать условия обитания, нарушенные в результате природных катастроф или антропогенного воздействия. Эту способность живого вещества к регенерации экологических условий выражает принцип Ле Шателье, заимствованный из области термодинамических равновесий. Он заключается в том, что изменение любых переменных в системе в ответ на внешние возмущения происходит в направлении компенсации производимых возмущений. В теории управления аналогичное явление носит название отрицательных обратных связей. Благодаря этим связям система возвращается в первоначальное состояние, если производимые возмущения не превышают пороговых значений. Таким образом, гомеостаз, устойчивость экосистемы, оказывается явлением не статическим, а динамическим.
В результате средообразующей функции в географической оболочке произошли следующие важнейшие события: был преобразован газовый состав первичной атмосферы; изменился химический состав вод первичного океана; образовалась толща осадочных пород в литосфере; на поверхности суши возник плодородный почвенный покров (также плодородны воды океана, рек и озер).
Вернадский объясняет парадокс: почему, несмотря на то, что общая масса живого вещества – пленка жизни, покрывающая Землю, – ничтожно мала, результаты жизнедеятельности организмов сказываются на составе и литосферы, и гидросферы, и атмосферы? Если живое вещество распределить на поверхности Земли ровным слоем, его толщина составит всего 2 см. При такой незначительной массе организмы осуществляют свою планетарную роль за счет весьма быстрого размножения, т. е. весьма энергичного круговорота веществ, связанного с этим размножением.
Масса живого вещества, соответствующая данному моменту времени, с трудом сопоставляется с тем грандиозным ее количеством, которое производило свою работу в течение сотен миллионов лет существования организмов. Если рассчитать всю массу живого вещества, воспроизведенного за это время биосферой, она окажется равной 2,4х10 20 т. Это в 12 раз превышает массу земной коры.
На земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом. Глины, известняки, доломиты, бурые железняки, бокситы – это все породы органогенного происхождения. Наконец, свойства природных вод, соленость Мирового океана и газовый состав атмосферы определяются жизнедеятельностью населяющих планету существ.
Рассмотрим влияние средообразующей функции организмов на содержание кислорода и углекислого газа в атмосфере. Напомним, что повышение концентрации СО2 в атмосфере вызывает «парниковый эффект» и способствует потеплению климата. Свободный кислород выделяется при фотосинтезе. Впервые на Земле массовое развитие фотосинтезирующих организмов – сине-зеленых водорослей – имело место 2,5 млрд лет назад. Благодаря этому в атмосфере появился кислород, что дало импульс быстрому развитию животных. Однако интенсивный фотосинтез сопровождался усиленным потреблением СО2 и уменьшением его содержания в атмосфере. Это привело к ослаблению «парникового эффекта», резкому похолоданию и первому в истории планеты (гуронскому) оледенению.
В наши дни накопление в атмосфере углекислого газа от сжигания углеводородного топлива рассматривается как тревожная тенденция, ведущая к потеплению климата, таянию ледников и грозящая повышением уровня Мирового океана более чем на 100 м. В этой связи следует отметить функцию захвата и захоронения избыточной углекислоты морскими организмами путем перевода ее в соединения углекислого кальция, а также путем образования биомассы живого вещества на суше и в океане.
Чистота морских вод – во многом результат фильтрации, осуществляемой разнообразными организмами, но особенно зоопланктоном. Большинство из этих организмов добывает пищу, отцеживая из воды мелкие частицы. Работа их настолько интенсивна, что весь океан очищается от взвеси за 4 года. Байкал исключительной чистотой своих вод во многом обязан веслоногому рачку эпишуре, который за год трижды процеживает его воду.
Основу функционирования живого вещества составляет биотический круговорот веществ. Биотический круговорот обеспечивается взаимодействием трех основных групп организмов:
1) продуцентов – зеленых растений, осуществляющих фотосинтез, и бактерий, способных к хемосинтезу, – они создают первичное органическое вещество;
2) консументов, потребляющих органическое вещество, – это растительноядные и хищные животные;
3) редуцентов (деструкторов), разлагающих мертвое органическое вещество до минерального, – это в основном бактерии, грибы и простейшие животные.
На восходящей ветви биотического круговорота, основанного на выполнении энергетической функции зелеными растениями, происходит аккумуляция солнечной энергии в виде органических веществ, синтезируемых растениями из неорганических соединений – углекислого газа, воды, азота, зольных элементов питания. Нисходящая ветвь биотического круговорота связана с потерями органического вещества. Важнейший процесс — дыхание растений, при котором до половины ассимилированного при фотосинтезе органического вещества окисляется до СО2 и возвращается в атмосферу. Второй существенный процесс расходования органического вещества и накопленной в нем энергии – это потребление растений консументами первого порядка – растительноядными животными. Запасаемая фитофагами с пищей энергия также в значительной мере расходуется на дыхание, жизнедеятельность, размножение, выделяется с экскрементами.
Растительноядные животные являются пищей для плотоядных животных – консументов более высокого трофического уровня. Консументы второго порядка расходуют накопленную с пищей энергию по тем же каналам, что и консументы первого порядка (растительноядные животные). Число трофических уровней, образуемых хищными животными, обычно не превышает трех-четырех, так как в связи с большими тратами энергии численность и биомасса животных на более высоких трофических уровнях становятся все меньше.
Каждое звено экосистемы поставляет в окружающую среду органические остатки (детрит), которые служат источником пищи и энергии для животных-сапрофагов, а главным образом для микроорганизмов – бактерий, грибов, актиномицетов и др. Завершающим этапом превращения органического вещества являются процессы гумификации и далее окисления гумуса до СО2 и минерализации зольных элементов, которые вновь возвращаются в почву и атмосферу, обеспечивая растение пищей.
Таким образом, биотический круговорот представляет собой непрерывный процесс создания и деструкции органического вещества. Он реализуется при участии представителей всех трех групп организмов: без продуцентов невозможна жизнь, поскольку лишь они производят основу жизни – первичное органическое вещество; консументы разных порядков, потребляя первичную и вторичную продукцию и переводя органическое вещество из одной формы в другую, способствуют возрастанию многообразия форм жизни на Земле; наконец, редуценты, разлагая органическое вещество до минерального, возвращают его к началу круговорота. Глобальные циклы миграции химических элементов не только связывают три наружные оболочки нашей планеты в единое целое, но и обусловливают непрерывную эволюцию ее состава.
Биогеохимический круговорот веществ. Понятия биотического и геологического круговоротов – их неразрывная связь.
В глобальном (планетарном) масштабе различаются два типа круговоротов веществ, протекающих под воздействием энергии солнечной радиации – геологический (абиотический) круговорот и биологический (биотический).
Геологический круговорот веществ совершается между сушей и Мировым океаном. Он связан с круговоротом воды и циркуляцией атмосферы. В ходе его осуществления выделяются этапы:
I. Выветривания горных пород суши;
II. Вынос образовавшихся минеральных солей в океан.
III. Усвоение растворенных элементов планктоном моря и прохождение его по пищевым цепям с частичным возвратом на сушу.
IV. Выпадения большей части минеральных элементов в состав осадочных породна дне океана.
Биологический круговорот состоит из двух противоположных, но взаимосвязанных процессов — синтезаорганического вещества автотрофами и минерализации органического вещества гетеротрофами. Он протекает на основе материально-энергетический обмена в биогеоценозах, который имеет циклический характер и протекает в форме круговорота веществ и одностороннего потока энергии, которая поступает в виде энергии солнечного света.
Автотрофы и гетеротрофы в этих процессах осуществляют хранение, перенос и трансформацию вещества и заключенной в нем потенциальной энергии по пищевой цепи. В ходе этого они вовлекают в биотический круговорот, до 40 разнообразных минеральных элементов, из которых основная жизнеобеспечивающая роль принадлежит углероду, кислороду, водороду, азоту, фосфору и сере. Посредниками в этом процессе становятся почва и атмосфера, от которых организмы получают необходимые вещества и энергию.
По общему охвату и масштабампроцессов преобразования веществ биологи выделяют целый ряд типов биологического круговорота веществ:
1) глобальный тип биологического круговорота, когда циклы преобразования, трансформации веществ рассматриваются во всеобъемлющем пространственном масштабе — в масштабе биосферы;
2) факультативный, частный (точнее, локальный) тип круговорота в случае рассмотрения циклов трансформации веществ в узких рамках — в масштабе биогеоценоза или тех или иных территориальных объединений биогеоценозов.
По тенденциям развитиябиогеоценозов различают:
1) прогрессивный тип биологического круговорота, когда под совокупным действием живых компонентов системы происходит улучшение биоценотической среды, повышение ее производительных потенций;
2) консервативный тип круговорота веществ в случае отсутствия позитивных изменений биотопа, которые свидетельствовали бы о повышении его продуктивности.
Различают также круговорот биогенных химических элементов питания.
Биологический круговорот может осуществляться двумя путями:
1. Малым (укороченным) — при участии двух групп организмов: растений, осуществляющие синтез первичной биологической продукции, и микроорганизмы, производящие разложение, минерализацию ее;
2. Большим, когда помимо растений и микроорганизмов, принимают участие также животные – фитофаги и хищники 1-го и 2-го.
Поскольку биогеоценоз представляет собой термодинамически открытую биокосную систему, то в нем различаются два круга обменных процессов: а) внутриценозный – проходящий в границах БГЦ. Такой круговорот веществ, осуществляющийся между компонентами в рамках биогеоценоза, называется биогеоценотическим;
б) внешний- включающий обмен веществ между биоценозом и его внешним окружением т. е. с другими биогеоценозами. Такие процессы могут называться межбиогеоценотическими.
Все эти процессы, проходящие на уровне биогеоценоза, так и при взаимодействии его с внешним окружением, представляют собой единый биогеоценотический процесс. В.Н.Сукачев считал, что биогеоценотический процесс представляет собою особую форму движения материи, характеризующуюся наличием своих особых специфических закономерностей, которые еще надлежит открыть.
Характерной чертой биологического круговорота веществ является его относительная замкнутость, т.к. в его структуре имеются каналы вноса и выноса химических элементов. Другими словами, идут процессы поступления в биотический круговорот новых минеральных элементов, а также и вынос некоторых из них поверхностными стоками, движением атмосферы, миграциями животных и т.п., включая изьятие вещества и энергии деятельностью человека.
Биологический круговорот веществ в биогеоценозе и биогеосфере включает в себе сезонные, годовые, многолетние и вековые циклы, т.е. его можно называть полициклическим.
Годовые циклыкруговорота, в своей структуре включающие сезонные циклы, протекают в течение года;
Многолетние циклы охватывают период жизни одного поколения основного ценозообразующего растения-эдификатора или период жизни ценозообразователей-соэдификаторов. В травяных биогеоценозах длительность многолетних циклов составляет 15—20 лет, в лесных 100—200 и более лет.
Вековые циклы круговорота охватываются периоды времени, в течение которого происходит коренная смена одного биогеоценоза другим. Этот процесс в лесных биогеоценозах может длиться от нескольких столетий до нескольких тысячелетий.
Исходя из этого различают понятия: цикл биологического круговорота и биологический круговоротвеществ.
Цикл биологического круговорота веществ конечен,он завершается в течение года, нескольких или даже многих лет и столетий.
Биологический круговорот, в отличие от этого происходит практически бесконечно, обеспечивая непрерывность жизни.
Показатели биологического круговорота
По А. И. Перельману (1966) к числу основных показателей биологического круговорота относятся:
а) емкость биологического круговорота, — масса химических элементов в составе живого вещества того или иного ландшафта, т.е. биомасса, ц/га;
б) структура биомассы- весовое соотношение зеленой части, корней растений, биомассы животных и микроорганизмов;
в) скорость биологического круговоротавеществ — количество живого вещества, образующегося и разлагающегося в единицу времени. Сюда входит ежегодный абсолютный прирост биомассы и абсолютный опад (ц/га) и их структура, ежегодный относительный прирост биомассы и относительный опад в процентах от общего веса биомассы и опада.
Круговороты углерода, кислорода.
Кислород — самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ , из которых построены организмы растений и животных. Массовая доля кислорода в земной коре составляет около 47%.
Кислород — бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха.
Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов — дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, — тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO2, воду и азот), а последние вновь вступают в общий круговорот веществ в природе.
Установившиеся в биосфере объемы потоков кислорода и кислородосодержащих соединений в современных условиях нарушаются техногенными миграциями. Промышленные, бытовые и сельскохозяйственные отходы, сброшенные в природные воды (реки, озера, моря, океаны), связывают растворенный в воде кислород, что также нарушает объемы кислородных потоков в биосфере. Загрязнение почв, сведение лесов уменьшает обмен кислородом и диоксидом углерода между атмосферой и сушей. Однако запасы кислорода на планете неисчерпаемы. Он входит в состав кристаллических решеток минералов и высвобождается из них при помощи живого вещества. Поэтому для поддержания установившихся объемов кислородных потоков в биосфере необходимо сохранение живого вещества как главной геохимической силы.
Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры.и их частичное восстановление , в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза.
Углерод находится в природе как в свободном состоянии, так и в виде многочисленных соединений. Свободный углерод встречается в виде алмаза и графита.
Соединения углерода очень распространены. Кроме ископаемого угля, в недрах Земли находятся большие скопления нефти, представляющей сложную смесь различных углеродсодержащих соединений, преимущественно углеводородов. Кроме того растительные и животные организмы состоят из веществ, в образовании которых главное участие принимает углерод. Таким образом, этот элемент — один из распространенных на Земле, хотя общее его содержание в земной коре составляет всего около 0,1%.
Углекислый газ поглощается растениями-продуцентами и в процессе фотосинтеза преобразуется в углеводы, белки, липиды и другие органические соединения. Эти вещества с пищей используют животные-консументы. Одновременно с этим в природе происходит обратный процесс. Все живые организмы дышат, выделяя углекислый газ, который поступает в атмосферу. Мертвые растительные и животные остатки и экскременты животных разлагаются (минерализуются) микроорганизмами-редуцентами. Конечный продукт минерализации — углекислый газ — выделяется из почвы или водоемов в атмосферу. Часть углерода накапливается в почве в виде органических соединений.
В морской воде углерод содержится в виде угольной кислоты и ее растворимых солей, но накапливается он в форме карбоната кальция CaCO3 (мел, известняки, кораллы). Часть углерода в виде карбонатов надолго исключается из круговорота, образуя осадки на дне водоемов. Однако с течением времени в процессах горообразования осадочные массы поднимаются на поверхность в виде горных пород. В результате преобразований этих пород углерод карбонатов вновь вовлекается в круговорот. Углерод поступает в атмосферу также с выхлопными газами автомашин, с дымовыми выбросами заводов и фабрик.
В процессе круговорота углерода в биосфере образуются энергетические ресурсы — нефть, каменный уголь, горючие газы, торф, древесина, которые широко используются человеком. Все эти вещества произведены фотосинтезирующими растениями за разное время. Возраст лесов — десятки и сотни лет; торфяников — тысячи лет; угля, нефти, газов — сотни миллионов лет. Следует учитывать, что древесина и торф — восполнимые ресурсы, т.е. воспроизводящиеся за относительно короткие промежутки времени, а нефть, горючий газ и уголь — ресурсы невосполнимые.
Круговорот азота, роль азотофиксаторов.
Азот является одним из основных биогенных элементов, входящий в состав белков. В живых организмах содержится в среднем 3% азота. На Земле запасы азота огромны. Только в атмосфере его содержание по объему составляет 79%.
Газообразный азот возникает в результате реакции окисления аммиака, образующегося при извержении вулканов (это ювенильный азот, который ранее не входил в состав биосферы) и разложении биологических отходов. Однако в свободном состоянии он не усваивается ни высшими растениями, ни животными. Молекулярный азот обладает очень слабой реакционной способностью, он не ядовит, но и не поддерживает жизненных процессов. Само название «азот» в переводе с древнегреческого означает «безжизненный» (а — отрицательная частицы, «зоон» — жизнь).
Эукариоты могут использовать только «связанный азот», входящий в состав неорганических и органических веществ, таких как аммиак (NH4), нитриты (NО2-) и нитраты (NО3-), а также белков.
В органические соединения свободный (молекулярный) азот переводят азотфиксирующие бактерии и сине-зеленые водоросли. Кроме того, незначительная часть свободного азота под действием электрических разрядов в атмосфере может превращаться в соединении с водой в азотистую и азотную кислоты. Последние, поступая в почву, образуют соли. В связанном состоянии азот (в виде нитрат-ионов (NО3-) и ионов аммония (NH4+)) усваивается растениями [показать] и используется для синтеза белков.
Растительные белки употребляются животными и человеком в пищу. В их организмах белки расщепляются до аминокислот и мочевины, выделяющейся затем во внешнюю среду. После отмирания организмов гнилостные (аммонифицирующие) бактерии разлагают азотсодержащие соединения до аммиака, а хемосинтезирующие (нитрифицирующие) бактерии переводят аммиак в соли азотистой и азотной кислот, которые вновь могут быть усвоены растениями. Эти реакции идут с выделением энергии, которая используется нитрификаторами для образования АТФ и синтеза органических соединений. Поэтому процессы нитрификации иногда называют «азотным дыханием».
Процесс связывания молекулярного азота живыми организмами называется азотфиксацией, а организмы, способные его усваивать — азотфиксирующими, или азотфиксаторами.
Нитрификаторы — группы бактерий, которые переводят аммиак в нитриты и нитраты.
Бактерии денитрификаторы разрушают белки и другие азотсодержащие вещества до молекулярного азота, который возвращается в атмосферу.
Денитрифицирующие бактерии разлагают аммиак до свободного азота. Результатом является обеднение почвы и воды соединениями азота и пополнение молекулярным азотом атмосферы. Некоторое количество соединений азота оседает в глубоководных отложениях и надолго (миллионы лет) выключается из круговорота. Эти потери компенсируются поступлением азота в атмосферу с вулканическими газами. Так замыкается круговорот азота.
Деятельность азотфиксирующих и денитрифицирующих бактерий взаимно уравновешивает друг друга. Поэтому количество атмосферного азота, связываемого азотфиксаторами, приблизительно равно его количеству, возвращаемому денитрификаторами в атмосферу, что позволяет поддерживать запасы азота в биосфере на постоянном уровне. Период круговорота всего запаса азота в биосфере оценивается приблизительно в 1000 лет.
Сельскохозяйственная деятельность человека, направленная на получение высоких урожаев сельскохозяйственных культур, изменяет баланс азота в биогеоценозе за счет внесения в почу азотных удобрений. Это могут быть как органические удобрения — торфокрошка, перегнившая листва, продукты жизнедеятельности живых организмов (гуано — экскременты птиц), так и минеральные удобрения (суперфосфат, аммиачная селитра и др.), промышленное производство которых постоянно растет.
Широкое и в ряде случаев неправильное применение минеральных удобрений (азотных, фосфорных, калийных) в сельском хозяйстве приводит к вымыванию их атмосферными осадками и грунтовыми водами из почвы в водоемы. Особенно большое количество соединений азота накапливается в стоячих водоемах — прудах, малопроточных озерах, а также в колодцах, берущих воду из самого верхнего водоносного слоя, повышая предельно допустимую концентрацию азота в питьевой воде.
Эвтрофикация (эвтрофирование) — увеличение продуктивности водных экосистем в результате накопления в воде биогенных элементов под действием антропогенных или природных факторов
Повышение содержания биогенных элементов в водоеме приводит к их эвтрофированию, интенсивному развитию в них автотрофных организмов, в первую очередь планктонных водорослей. Ее наглядным примером является цветение водоемов, что имеет такие неприятные последствия, как снижение рекреационных свойств водоемов, ухудшение качества воды, гибель многих видов водных организмов, в том числе рыб. Поэтому в последние годы разрабатываются нетрадиционные методы увеличения содержания азота в почве:
Налажено выращивание ряда штаммов азотфиксирующих бактерий на заводах белково-витаминных препаратов. Их концентрированную культуру в сочетании с минеральными удобрениями вносят в почву или добавляют в корм скоту.
Делаются эксперименты по внедрению генов азотфиксирующих бактерий, которые регулируют фиксацию азота, в другие виды почвенных бактерий.
Проводятся исследования по выведению штаммов азотфиксирующих бактерий, которые могли бы развиваться на корнях культурных растений, например, злаковых, и крестоцветных и пасленовых
Круговорот воды в природе
Вода — весьма распространенное на Земле вещество. Почти 3/4 поверхности земного шара покрыты водой, образующей океаны, моря, реки, озера. Много воды находится в газообразном состоянии в виде паров в атмосфере; в виде огромных масс снега и льда лежит она круглый год на вершинах высоких гор и в полярных странах. В недрах земли также находится вода, пропитывающая почву и горные породы.
Природная вода не бывает абсолютно чистой. Наиболее чистой является дождевая вода, но и она содержит незначительные количества различных примесей, которые захватывает из воздуха.
Весьма важное значение для нашей планеты имеет КРУГОВОРОТ ВОДЫ. Он слагается из процессов, имеющих разную протяженность — от оборота воды на протяжении суток в результате транспирирующей деятельности одного растения, всасывающего выпавшею атмосферную воду корнями и вновь возвращающего ее в атмосферу листьями, до медленного движения огромных масс воды, связывающего земную кору с гидросферой и атмосферой.
Круговорот воды на поверхности Земли складывается из 520 тыс. км выпадающей и такой же массы испаряющейся воды. При этом на континентах выпадает в год 109000 км , а испаряется 72000км . Разница в 37000 км и есть цифровое значение полного речного стока. С поверхности Мирового океана испаряется воды больше (448000 км ), чем выпадает осадков (441000 км ). Разность покрывается стоком речных вод.
Огромный круговорот воды сопровождает процесс созидания органического вещества. Выделяемый растениями кислород образуется при реакции фотосинтеза за счет расщепления воды. Однако на фотосинтез расходуется всего около 1% воды, проходящей из почвы через растения в атмосферу. Чтобы вырастить 1 ц пшеницы, растения должны пропустить через себя не менее 10000кг воды. По расчетам О.П. Добродеева, при формировании общепланетарной биомассы всех ныне существующих живых организмов в результате фотосинтеза было расщеплено такое количество воды, которое в 3,5 раза больше количества, находящегося во всех реках мира.
Время, необходимое для прохождения всей воды нашей планеты через систему биологического круговорота, можно определить следующим образом. Общая масса воды в наружных оболочках Земли — земной коре, гидросфере и атмосфере, по данным А.П.Виноградова, составляет 160000000 млрд. т. Масса воды, захватываемая годовой продукцией фотосинтезирующих организмов, около 800 млрд.т/г. Период полного оборота всей воды в процессе образования живого вещества примерно 2 млн. лет. Таким образом, вся огромная масса гидросферы Земли за 2 млн. лет проходит через растительные организмы, масса которых ничтожно мала по сравнению с водной оболочкой.
Круговые движения воды не ограничиваются поверхностью Земли. Значительное количество воды присутствует в горных породах в виде пленочных и поровых вод, еще больше входит ее в состав минералов, образующихся в зоне гипергенеза. Все глинистые минералы, оксиды железа и другие распространенные в этой зоне соединения содержат в своем составе воду. Подсчитано, что в 16-ти километровом слое земной коры содержится примерно 200 млн. км воды. Поступая в глубинные зоны земной коры, связанные формы воды постепенно освобождаются и включаются в метаморфические, магматические и гидротермические процессы. С вулканическими газами и горячими источниками глубинные воды поступают на поверхность.
Круговорот кальция, фосфора, железа, серы.
Известняки (как и др. породы) на континенте разрушаются, и растворимые соли кальция (двууглекислые и др. ) реками сносятся в море. Ежегодно в море сбрасывается с континента ок. 5*108м кальция. В тёплых морях углекислый кальций интенсивно потребляется низшими организмами — фораминиферами, кораллами и др. — на постройку своих скелетов. После гибели этих организмов их скелеты из углекислого кальция образуют осадки на дне морей. Со временем происходит их метаморфизация, в результате чего формируется порода — известняк. При регрессии моря известняк обнажается, оказывается на суше и начинается процесс его разрушения. Но состав вновь образующегося известняка несколько иной. Так, оказалось, что палеозойские известняки более богаты углекислым магнием и сопровождаются доломитом, известняки же более молодые — беднее углекислым магнием, а образования пластов доломитов в современную эпоху почти не происходит. Наконец, при излиянии лавы известняки частично могут быть ею ассимилированы, т. е. войти в большой круговорот веществ.
Т. о. , отдельные циклические процессы, слагающие общий круговорот веществ на Земле, никогда не являются полностью обратимыми. Часть вещества в повторяющихся процессах превращения рассеивается и отвлекается в частные круговороты пли захватывается временными равновесиями, а другая часть, которая возвращается к прежнему состоянию, имеет уже новые признаки. Продолжительность того пли иного цикла можно условно оценить по тому времени, которое было бы необходимо, чтобы вся масса данного вещества могла обернуться один раз на Земле в том или ином процессе
Фосфор принадлежит к числу довольно распространенных элементов; содержание его в земной коре составляет около 0.1% (масс.). Вследствие легкой окисляемости фосфор в свободном состоянии в природе не встречается. Из природных соединений фосфора самым важным является ортофосфат кальция, который в виде минерала фосфорита иногда образует большие залежи. Богатейшие месторождения фосфоритов находятся в Южном Казахстане в горах Каратау. Фосфор, как и азот, необходим для всех живых существ, так как он входит в состав некоторых белков как растительного, так и животного происхождения. В растениях фосфор содержится главным образом в белках семян, в животных организмах — в белках молока, крови, мозговой и нервной тканей. В виде кислотного остатка фосфорной кислоты фосфор входит в состав нуклеиновых кислот — сложных органических полимерных соединений, принимающих непосредственное участие в процессах передачи наследственных свойств живой клетки. Сырьем для получения фосфора и его соединений служат фосфориты и апатиты. Природный фосфорит или апатит измельчают, смешивают с песком и углем и накаливают в печах с помощью электрического тока без доступа воздуха всех живых организмах.
Основной источник его — горные породы (главным образом изверже-
ные). Среднее содержание фосфора в земной коре 0,085%. Представлен он в основном апатитом и фторапатитом. В осадочных породах это обычно вивианит, вавелит, фосфорит. С образованием биосферы высвобождение фосфора из горных пород усилилось, в результате произошло значительное перераспределение его. Все живое вещество планеты (в среднем) содержит фосфора 0,07%, т.е. немногим менее, чем в литосфере.
Источником фосфора в биосфере главным образом являются апатиты, встречающиеся во всех магматических породах. В превращениях фосфора большую роль играет живое вещество. Организмы усваивают фосфор из почв, водных растворов. Фосфор входит в состав белков, нуклеиновых кислот, и других органически соединений.
Особенно много фосфора в костях животных. С гибелью организмов фосфор возвращается в почву он концентрируется в виде морских фосфатных конкреций, отложений костей рыб, что создает условия для образования богатых фосфором пород, которые в свою очередь служат источником фосфора в биогенном цикле.
Деятельность человека в настоящее время направлена на увеличение содержания фосфора в окружающей среде. Это явление В.А.Ковда назвал фосфатизацией суши. Она происходит за счёт вылова продуктов моря, богатых фосфором, и главным образом в результате извлечения фосфора из агроруд для производства фосфорных удобрений, различных фосфорсодержащих препаратов. Фосфатизация суши происходит неравномерно. Наиболее сильно она проявляется в промышленно развитых районах, характеризующихся большой плотностью населения. В отличие от них в КРУГОВОРОТ ЖЕЛЕЗА
Железо — элемент, который в небольших количествах необходим всем организмам. На суше его обычно хватает, но в океане, особенно в центральных, удаленных от континентов областях, железа крайне мало. Дефицит этого элемента нередко ограничивает развитие фитопланктона – микроскопических планктонных водорослей, связывающих в процессе фотосинтеза углекислый газ. Считалось, что в те немногие места в центральных районах океана, где продуктивность фитопланктона достаточно высокая, железо попадает с пылью, приносимой ветрами с континентов. Однако недавно французские ученые совместно с коллегами из других стран показали, что пятна «цветения» (участки массового развития фитопланктона) в отдаленных областях океана могут полностью обеспечиваться железом, поступающим не сверху (с пылью из атмосферы), а снизу – из более глубоких слоев водной толщи. В частности, такой весьма обширный участок повышенной продуктивности находится над Кергеленским плато – в Южном океане, между Австралией и Африкой. Благодаря сравнительно небольшой глубине (600 м) железо здесь долго не выходит из биологического круговорота и многократно используется фитопланктоном, поддерживая высокую его продуктивность. Соответственно, здесь связывается и большое количество CO2 – по крайней мере, в 10, а может, и в 100 раз больше того, что предполагалось ранее. Не исключено, что в ледниковые периоды, когда уровень океана существенно понижался, увеличение продукции фитопланктона и соответствующее усиление связывания CO2 атмосферы происходило в значительной мере за счет интенсивного поступления железа снизу – из придонных областей, а не только сверху – за счет приносимой с суши пыли.
Выделяются районы, где происходит, наоборот, дефосфатизация.
Сера встречается в природе как в свободном состоянии (самородная сера), так и в различных соединениях. Очень распространены соединения серы с различными металлами. Из соединений серы в природе распространены также сульфаты, главным образом, кальция и магния. Наконец, соединения серы содержаться в организмах растений и животных.
Сера широко используется в народном хозяйстве. В виде серного цвета серу используют для уничтожения некоторых вредителей растений. Она применяется также для приготовления спичек, ультрамарина (синяя краска), сероуглерода и ряда других веществ.
Круговорот серы происходит в атмосфере и литосфере . Поступление серы в атмосферу происходит в виде сульфатов, серного ангидрида и серы из литосферы при вулканических извержениях, в виде сероводорода за счет распада пирита (FeS2 ) и органических соединений. Антропогенным источником поступления серы в атмосферу являются тепловые электростанции и другие объекты, где происходит сжигание угля, нефти и других углеводородов, а поступление серы в литосферу, в частности в почву, происходит с удобрениями и органическими соединениями. Перенос соединений серы в атмосфере осуществляется воздушными потоками, а выпадение на земную поверхность либо в виде пыли, либо с атмосферными осадками в виде дождя (кислотные дожди) и снега. На поверхности Земли в почве и водоемах происходит связывание сульфатных и сульфитных соединений серы кальцием с образованием гипса (CaSO4). Помимо этого происходит захоронение серы в осадочных породах с органическими остатками растительного и животного происхождения, из которых в дальнейшем происходит образование угля и нефти. В почве изменение соединений серы происходит с участием сульфобактерий использующих сульфатные соединения и выделяющих сероводород, который поступая в атмосферу и окисляясь снова переходит в сульфаты. Кроме этого сероводород в почве может восстанавливаться до серы, которая денитрифицирующими бактериями окисляется до сульфатов.
Основы аутэкологии: среда, организм, адаптация, экологический фактор. Классификации экологических факторов.
Среда — комплекс природных тел и явлений, с которыми организм находится в прямых или косвенных взаимоотношениях. В широком смысле это материальные тела, явления и энергия, воздействующие на организм. Организм — живоетело, обладающее совокупностью свойств, отличающих его отнеживой материи. Адаптация – приспособление организмов к определенным условиям среды, которая достигается за счет комплекса признаков.Экологический фактор — это любое условие среды, способное оказывать прямое или косвенное влияние на живой организм хотя бы на протяжении одной из фаз его индивидуального развития. В свою очередь, организм реагирует на экологический фактор специфическими приспособительными реакциями, т.е. адаптируется к ним.