- Альпийская складчатость
- Полезное
- Смотреть что такое «Альпийская складчатость» в других словарях:
- Альпийская складчатость: особенности формирования. Горы альпийской складчатости
- Складчатости земной коры
- Альпийская складчатость: характеристика периода
- Средиземноморский пояс
- Тихоокеанское огненное кольцо
- 47. Альпийская складчатость.
- 48. Основные этапы развития органического мира.
Альпийская складчатость
Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .
Полезное
Смотреть что такое «Альпийская складчатость» в других словарях:
АЛЬПИЙСКАЯ СКЛАДЧАТОСТЬ — эра тектогенеза преимущественно в кайнозое; проявилась в пределах геосинклинальных областей, которые развивались в мезозое и палеогене. В альпийской складчатости возникли складчатые горные сооружения Альп, Кавказа, Памира, Гималаев и многие др … Большой Энциклопедический словарь
Альпийская складчатость — (a. alpine folding; н. alpinische Orogenese, alpine Faltung; ф. plissement alpin; и. plegamiento alpinico) эра тектогенеза, проявившаяся c конца мела и преим. в кайнозое в пределах геосинклинальных областей, развивавшихся в мезозое и… … Геологическая энциклопедия
альпийская складчатость — Совокупность процессов складчатости и горообразования, происходивших в кайнозойскую эру и приведших к формированию альпийских хребтов, протягивающихся от Пиренеев, гор Атласа и Альп к Кавказу и Гималаям … Словарь по географии
Альпийская складчатость — Кавказские горы. Типичный пример альпийской складчатости Альпийская складчатость последняя крупнейшая эпоха тектогенеза, о … Википедия
альпийская складчатость — эра тектогенеза преимущественно в кайнозое; проявилась в пределах геосинклинальных областей, которые развивались в мезозое и палеогене. В альпийской складчатости возникли складчатые горные сооружения Альп, Кавказа, Памира, Гималаев и др. * * *… … Энциклопедический словарь
Альпийская складчатость — период в истории Земли (мезозой, кайнозой), во время которого наблюдалась сильная тектоническая активизация процессов горообразования, складчатости, разломообразования, гранитизации, вулканизма, сейсмичности и др. геодинамических процессов. В… … Географическая энциклопедия
АЛЬПИЙСКАЯ СКЛАДЧАТОСТЬ — эра тектогенеза преим. в кайнозое; проявилась в пределах геосинклинальных областей, к рые развивались в мезозое и палеогене. В А. с. возникли складчатые горн, сооружения Альп, Кавказа, Памира, Гималаев и др … Естествознание. Энциклопедический словарь
Альпийская геосинклинальная область — (складчатая) самая молодая часть Средиземноморского геосинклинального пояса (См. Средиземноморский геосинклинальный пояс), включающая кайнозойские складчатые горные сооружения. Охватывает складчатые системы Альп, Карпат, Балканского и… … Большая советская энциклопедия
СКЛАДЧАТОСТЬ АЛЬПИЙСКАЯ — наиболее молодая, существенно кайнозойская складчатость, широко проявленная в Средиземноморском и Тихоокеанском подвижных поясах. Впервые термин был применен Бертраном (Bertrand, 1886 1887) для обозн. складчатости мезозойско кайнозойских и более… … Геологическая энциклопедия
СКЛАДЧАТОСТЬ КАМЧАТСКАЯ — см. Складчатость альпийская. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
Альпийская складчатость: особенности формирования. Горы альпийской складчатости
Альпийская складчатость – эпоха в истории образования земной коры. В эту эру образовались самая высокая горная система мира – Гималаи. Чем характеризуется эпоха? Какие ещё горы альпийской складчатости существуют?
Складчатости земной коры
В геологии слово «складка» недалеко отходит от своего первичного значения. Оно обозначает участок земной коры, в котором порода «смялась». Обычно порода залегает горизонтальными слоями. Под действием внутренних процессов Земли её положение может изменяться. Она прогибается или сдавливается, накладываясь на соседние участки. Это явление и называется складчатостью.
Образование складчатостей происходит неравномерно. Периоды их появления и развития названы в соответствии с геологическими эпохами. Самой древней является архейская. Она закончила формироваться ещё 1,6 миллиарда лет назад. С того времени многочисленные внешние процессы планеты превратили её в равнины.
После архейской существовали байкальская, каледонская, герцинская, мезозойская складчатость. Самой последней является альпийская эпоха складчатости. В истории формирования земной коры она занимает последние 60 миллионов лет. Название эпохи впервые озвучил французский геолог Марсель Бертран в 1886 году.
Альпийская складчатость: характеристика периода
Эпоху условно можно разделить на два периода. В первом в земной поверхности активно появлялись прогибы. Постепенно они заполнялись лавой и осадочными отложениями. Поднятия коры были небольшими и очень локальными. Второй этап происходил интенсивнее. Различные геодинамические процессы способствовали образованию гор.
Альпийская складчатость сформировала большую часть крупнейших современных горных систем, которые входят в Средиземноморский складчатый пояс и Тихоокеанское вулканическое кольцо. Таким образом, складчатость образует две большие области с горными хребтами и вулканами. Они входят в состав самых молодых гор планеты и отличаются климатическими зонами, а также высотами.
Эпоха ещё не завершилась, а горы продолжают образовываться и сейчас. Об этом свидетельствует сейсмическая и вулканическая активность в различных регионах Земли. Складчатая область не сплошная. Хребты часто прерываются впадинами (например, Ферганская впадина), в некоторых из них образовались моря (Черное, Каспийское, Средиземное).
Средиземноморский пояс
Горные системы альпийской складчатости, которые принадлежат к альпийско-гималайскому поясу, протянулись в широтном направлении. Они практически полностью пересекают Евразию. Начинаются в Северной Африке, проходят через Средиземное, Черное и Каспийское моря, тянется через Гималаи до островов Индокитая и Индонезии.
Горы альпийской складчатости включают Апеннины, Динары, Карпаты, Альпы, Балканы, Атлас, Кавказ, Бирму, Гималаи, Памир и т. д. Все они отличаются своим обликом и высотой. Например, Карпатские горы — средневысокие, имеют плавные очертания. Они покрыты лесами, альпийской и субальпийской растительностью. Крымские горы, в отличие от них, более крутые и скалистые. Их покрывает более скупая степная и лесостепная растительность.
Самая высокая горная система – Гималаи. Они находятся в пределах 7 стран, включая Тибет. Горы растянулись на 2 400 километров в длину, а их средние высоты достигают 6 километров. Наивысшей точкой является гора Эверест с высотой 8848 километров.
Тихоокеанское огненное кольцо
Альпийская складчатость связана и с формированием Тихоокеанского огненного кольца. Оно включает горные хребты и впадины, которые к ним прилегают. Расположено вулканическое кольцо по периметру Тихого океана.
Оно охватывает Камчатку, Курильские и Японские острова, Филиппины, Антарктиду, Новую Зеландию и Новую Гвинею на западном побережье. На восточном побережье океана в него входят Анды, Кордильеры, Алеутские острова и архипелаг Огненная Земля.
Название «огненное кольцо» эта область заслужила благодаря тому, что здесь находится большинство вулканов планеты. Приблизительно 330 из них действующие. Кроме извержений, в пределах Тихоокеанского пояса происходит наибольшее количество землетрясений.
Частью кольца является самая длинная горная система планеты – Кордильеры. Они пересекают 10 стран, входящих в Северную и Южную Америку. Протяженность горной цепи составляет 18 тысяч километров.
47. Альпийская складчатость.
АЛЬПИЙСКАЯ СКЛАДЧАТОСТЬ — эра тектогенеза, проявившаяся с конца мела и преимущественно в кайнозое в пределах геосинклинальных областей, развивавшихся в мезозое и раннем палеогене; завершилась возникновением молодых горных сооружений — альпид.
Один из районов типичного проявления Альпийской складчатости — Альпы (с чем связано происхождение термина » Альпийская складчатость «). Кроме Альп, к области Альпийской складчатости относятся: в Европе — Пиренеи, Андалусские горы, Апеннины, Карпаты, Динарские горы, Балканы; в Северной Африке — горы Атлас; в Азии — Кавказ, Понтийские горы и Тавр, Туркмено-Хорасанские горы, Эльбурс и Загрос, Сулеймановы горы, Гималаи, складчатые цепи Бирмы, Индонезии, Камчатки, Японских и Филиппинских островов; в Северной Америке — складчатые хребты Тихоокеанского побережья Аляски и Калифорнии; в Южной Америке — Анды; архипелаги, обрамляющие Австралию с востока, в т.ч. острова Новая Гвинея и Новая Зеландия. Альпийская складчатость проявилась не только в пределах геосинклинальных областей в виде эпигеосинклинальных складчатых сооружений, но местами затронула и соседние платформы — Юрские горы и часть Пиренейского полуострова (Иберийские цепи) в Западной Европе, южная часть гор Атлас в Северной Африке, Таджикскую депрессию и юго-западной отроги Гиссарского хребта в Средней Азии, Восточных Скалистых гор в Северной Америке, Патагонские Анды в Южной Америке, Антарктический полуостров в Антарктиде и др.
С Альпийской складчатостью связано также образование складок в межгорных прогибах сводово-глыбовых горных сооружений Cpедней и Центральной Азии (Ферганская, Цайдамская и другие впадины), возникших в процессе эпиплатформенного горообразования. Альпийская складчатость в широком смысле (т.е. охватившая по времени мезозой и кайнозой) состояла из нескольких фаз, среди которых выделяют ларамийскую (в конце мела — начале палеогена), пиренейскую (в конце эоцена — начале олигоцена), савскую (на рубеже олигоцена и миоцена), штирийскую (в середине миоцена), аттическую (в конце миоцена), роданскую (в середине плиоцена) и валахскую (в плейстоцене). Проявление каждой фазы пространственно не распространяется на всю область Альпийской складчатости.
Территория, охваченная Альпийской складчатостью сохраняет высокую тектоническую активность и в современную эпоху, что выражается в интенсивно расчленённом рельефе, высокой сейсмичности и продолжающейся во многих местах вулканической деятельности (вулканы Везувий, Этна и др.). С Альпийской складчатостью связано развитие разнообразных плутоногенных и вулканогенных гидротермальных месторождений руд меди, цинка, свинца, золота, вольфрама, олова, молибдена и особенносурьмы и ртути.
48. Основные этапы развития органического мира.
Изучением основных этапов эволюции живого занимается палеонтология – наука об ископаемых организмах. Поскольку биологической эволюции предшествовала длительная предбиологическая эволюция, отдельные этапы биогенеза современная наука увязывает с геогенезом. В геологической истории Земли выделяют различные эры, в которые происходили значительные геологические преобразования, перераспределялись суша и море, менялся климат и т. п. Кроме того, после возникновения жизни каждая эра характеризовалась своеобразием растительного и животного мира.
• катархей (5 млрд – 3,5 млрд лет назад);
• архей (3,5 млрд – 2,6 млрд лет назад);
• протерозой (2,6 млрд – 570 млн лет назад);
• палеозой (570 млн – 230 млн лет назад);
• мезозой (230 млн – 67 млн лет назад);
• кайнозой (67 млн лет назад – до настоящего времени).
Возраст Земли – около 5 млрд лет. Жизнь на нашей планете возникла в архее, примерно 3,5 млрд лет назад. В это время появляются первые живые клетки – прокариоты. Прокариоты – это простые организмы, способные к быстрому размножению, легко приспосабливающиеся к изменяющимся условиям окружающей среды. Характерное свойство прокариотов – отсутствие выраженного ядра. Эти организмы были анаэробными, т. е. могли жить без кислорода (напомним, что первичная атмосфера Земли состояла из смеси гелия, неона, аргона, водорода, метана и азота). Эти организмы были гетеротрофами, т. е. все необходимые для жизни вещества получали в готовом виде из окружающей среды. Однако истощение первичного «органического бульона» потребовало радикального изменения способов питания. На этом этапе биогенеза преимущество имели те организмы, которые могли получить большую часть необходимой для жизни энергии за счет солнечного излучения. Световая энергия ускоряла химические реакции, в ходе которых синтезировались необходимые для жизни вещества. Процесс выработки необходимых веществ с помощью поглощения солнечной энергии называется фотосинтезом. Таким образом, на смену гетеротрофам пришли автотрофы – живые организм^! которые существуют за счет солнечной энергии и вырабатывают необходимые для жизни вещества самостоятельно. Первыми автотрофами б^1ли цианеи, затем зеленые водоросли. Фотосинтез сыграл существенную роль в биогенезе, способствовал общему ускорению эволюции органической материи. На этом этапе преимущество получили аэробные организмы, которые способны к жизни только в присутствии кислорода.
Появление автотрофных организмов серьезно повлияло на состав земной атмосферы. Дело в том, что в процессе своей жизнедеятельности автотрофные организмы выделяют большое количество кислорода и благодаря этому первичная атмосфера Земли постепенно преобразовалась во вторичную, сформировался озоновый слой, защищающий живые организмы от смертоносного действия ультрафиолетовых лучей, изменился состав воды в водоемах и т. п. Таким образом, биогенез оказал существенное влияние на эволюцию нашей планеты и гармонично «встроился» в гео-генез, став его продолжением и развитием. Считается, что нынешнее содержание кислорода в атмосфере (21 %), б^1ло достигнуто в палеозое, 250 млн лет назад, однако этот процесс начался уже в архее.
В протерозое (1,8 млрд лет назад) появляются эукарио-тыг – живые организмы, клетки которых содержат выраженное ядро. Эукариоты более соответствовали новым условиям. В отличие от прокариотов ДНК эукариотов собрана в хромосомы и способна воспроизводиться без значительных изменений. Существуют две основные гипотезы происхождения эукариотов: аутогенная и симбиотическая. Согласно аутогенной гипотезе эукариоты возникли путем усложнения слабоструктурированных клеток, подобных прокариотам. Сторонники симбиотической гипотезы считают, что эукариоты появились как результат симбиоза нескольких прокариотных клеток, геномы которых объединились в новую целостность.
Примерно 1 млрд лет назад произошло разделение эукариотов на растительные и животные клетки. Структурные различия между растительной и животной клетками невелики. Более существенными являются различия в способах получения необходимых для жизни питательных веществ. В дальнейшем растительные клетки эволюционировали в сторону использования фотосинтеза для обеспечения себя энергией, а животные клетки – в направлении совершенствования способов передвижения (именно способность к передвижению дает возможность животным организмам искать себе пищу). Известны организмы, которые занимают промежуточное положение между растениями и животными. Например, простейший одноклеточный организм эвглена зеленая питается как растение, а передвигается как животное. Эвглену зеленую рассматривают как переходное звено между растительным и животным царствами. Другой пример – растения, которые по способу питания аналогичны животным: растения-паразиты повилика и хмель или насекомоядные растения мухоловка и росянка. Кроме того, существуют совершенно неподвижные животные организмы – моллюски.
Следующим существенным шагом в биологической эволюции стало появление 900 млн лет назад полового размножения. Механизм полового размножения заключается в слиянии и последующем распределении генетического материала двух организмов. Половое размножение значительно повышает видовое разнообразие, что, с одной стороны, позволяет живым организмам лучше приспособиться к условиям окружающей среды, а с другой – значительно ускоряет эволюционный процесс.
Появление первых многоклеточных организмов произошло примерно 800 млн лет назад. Многоклеточный организм обладает развитыми органами и тканями, т. е. более дифференцирован по сравнению с одноклеточным. Первыми многоклеточными были губки, членистоногие и кишечнополостные.
В палеозое, 500 млн – 440 млн лет назад появляются первые крупные (10–11 м) плотоядные животные и первые небольшие по размерам (около 10 см) позвоночные. Примерно 410 млн лет назад живые организмы начинают завоевывать сушу. Наземные растения получили значительные преимущества перед водными, поскольку процессы фотосинтеза на суше протекают интенсивнее, чем в воде. Первые наземные растения – псилофиты – занимали промежуточное положение между наземными сосудистыми растениями и водорослями. Вслед за растениями на сушу перебрались и животные. Первые наземные животные напоминали современных скорпионов, они были двоякодышащими, т. е. приспособленными к дыханию и в воде, и на суше. От двоякодышащих существ впоследствии произошли сначала земноводные, а затем и сухопутные позвоночные животные. Первыми полностью приспособленными для жизни на суше животными организмами стали древние рептилии, которые по виду напоминали современных ящериц. Примерно в этот же период возникли и насекомые. Около 300 млн лет назад насекомые начинают летать и затем на протяжении почти 100 млн лет господствовали в воздухе.
В мезозое (230 млн – 67 млн лет назад) происходит дальнейшая эволюция животного и растительного мира. Постепенно у наземных растений формируется компактное тело, происходит его дифференциация на корень, стебель, листья, совершенствуются покровные ткани, развивается проводящая система, обеспечивающая растения водой и питательными веществами, изменяются способы размножения. Для целей размножения на суше больше подходят споры и семена, поэтому эволюционное преимущество получили те растения, которые размножались именно таким способом. Дальнейшая эволюция растительного мира связана с совершенствованием семян.
Животное царство также развивается. В начале мезозоя рептилии полностью завоевали сушу, поэтому мезозойскую эру часто называют эрой пресмыкающихся. Древние рептилии постепенно осваивают все новые и новые места обитания, и все более удаляются от воды. Постепенно в ходе эволюции возникали плавающие, летающие и передвигающиеся по суше, хищные и растительноядные рептилии. 195 млн – 137 млн лет назад от древних летающих пресмыкающихся произошли первые птицы, которые сочетали в себе признаки птиц и рептилий. 230 млн – 195 млн лет назад появились первые млекопитающие.
Кайнозой (67 млн лет назад – настоящее время) – время господства млекопитающих, птиц, насекомых и цветковых растений. В конце мезозойской эры произошло сильное похолодание, которое привело к гибели значительного числа видов растений и общему сокращению пространств, занятых растительностью. В этих условиях эволюционное преимущество получили покрытосеменные растения, у которых процесс размножения не только не зависит от наличия водной среды, но и возможен в новых климатических условиях. Покрытосеменные – цветковые – растения и сейчас составляют большую часть царства растений. Безусловно, в течение 67 млн лет кайнозойской эры не раз происходили изменения растительного царства, но цветковые растения по-прежнему сохраняют господство.
Похолодание в конце мезозойской эры и гибель многочисленных видов растений привели к вымиранию сначала растительноядных, а затем и питавшихся ими хищных динозавров. В условиях похолодания значительное эволюционное преимущество получили теплокровные животные – млекопитающие и птицы. На протяжении миллионов лет происходит появление новых видов живых существ, которые распространяются по поверхности Земли, занимая сушу, воздух и водную среду. Примерно 8 млн лет назад начали формироваться современные семейства млекопитающих. В этот же период появились разнообразные виды приматов и тем самым сложились предпосылки для начала антропогенеза. 2–3 млн лет назад началось очередное вымирание лесов. Одна из групп антропоидных обезьян постепенно стала осваивать новые огромные открытые пространства. Предположительно именно от этих обезьян произошли люди (6.3).
Сейчас жизнь на Земле представлена клеточными и до-клеточными организмами. Доклеточные живые организмы – вирусы и фаги. Клеточные организмы традиционно разделяют на четыре царства: микроорганизмы, грибы, растения и животные. Основными группами органической природы считаются растения и животные. В настоящее время царство растений представлено более чем 500 тыс. видов, царство животных – более 1,2 млн видов.