Аэрокосмические снимки как источник географической информации

Аэрокосмический и геоинформационный метод

Аэрокосмические методы обеспечивают определение географического положения изучаемых объектов или явлений и получения их качественных и количественных биографических характеристик.

К аэрометодам можно отнести визуальные методы наблюдения, ведущиеся с летальных аппаратов. Но значительно, главную роль играет аэросъемка.

Аэрофотосъемка – это основной вид, который широко применяется уже с 30-х годов и поныне остается основным методом топографической съемки. Она используется также в ландшафтных исследованиях. Помимо простой, применяется тепловая, радиолокационная, многозональная аэрофотосъемка. К числу космических методов, относят, прежде всего, визуальные наблюдения – это прямые наблюдение за состоянием атмосферы, земной поверхности, наземных объектов, которые проводились и проводятся с началом космической эры.

Первое место в аэрокосмических методах занимает изучение объекта по снимкам, поэтому главная их задача заключается в целенаправленном получении и обработке снимков. Аэрокосмический снимок – это прежде всего информационная модель изучаемого объекта или явления. Аналоговые и цифровые аэрокосмические снимки имеют десятки разновидностей, несут разнообразную информацию о географических объектах и явлениях, о их взаимосвязях и пространственном распределении, состоянии, изменении во времени. Для хорошей результативности использования этих снимков исследователь должен знать их информационные свойства и владеть специальными способами и приемами эффективного извлечения из снимков требуемой информации [2].

При использовании аэрокосмических методов исследования информации об удаленном объекте можно получить с помощью электромагнитного излучения, которое характеризуется такими параметрами, как интенсивность, спектральный состав, поляризация и направление распространения. Зарегистрированные параметры излучения, функционально зависящие от биогеофизических характеристик, свойств, состояния и пространственного положения объекта исследования, позволяет изучать его косвенно. В этом заключается сущность аэрокосмических методов [1].

Аэрокосмические методы помогают прямо или косвенно извлекать только ту географическую информацию о местности, которая заложена в особенностях излучения, идущего от объекта съемки.

Следом за визуальными наблюдениями началась космическая фотосъемка и телесъемка, а затем получило распространение и более сложные виды космической съемки – спектрометрическая, радиометрическая, радиолокационная, тепловая и др.

Таким образом к достоинствам и особенностям космической съемки можно отнести прежде всего:

• огромный обзор космоснимков;

• высокую скорость получения и передачи информации;

• возможность многократного повторения снимков одних и тех же объектов и территорий, что позволяет анализировать динамику процессов.

Развитие геоинформатики привело к созданию геоинформационных систем. ГИС — географическая информационная система представляет собой комплекс взаимосвязанных средств получения, хранения, переработки, отбора данных и выдачи географической информации. В данный момент в мире работают уже сотни и тысячи геоинформационных систем, и тем не менее это только начальные этапы его возникновения. На базе географически информационной системы развиваются и вводятся в научный оборот новые виды текстов и изображений.

Дистанционного зондирования (наблюдение поверхности Земли наземными, авиационными и космическими средствами оснащенными различными видами съемочной аппаратуры) является источником данных для ГИС.

Важнейшей особенностью ГИС является способность связывать картографические объекты (т. е. объекты, имеющие форму и местоположение) с описательной, атрибутивной информацией, относящейся к этим объектам и описывающей их свойства.

ГИС обеспечивает новыми удивительными инструментами, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками, таблицами, диаграммами, фотографиями и другими средствами, например, мультимедийными [3].

Дистанционное зондирование является одним из основных методов оперативного получения сведений о земной поверхности. Исключительно богатая информация и высокая точность цифрового изображения в сочетании с универсальностью и экономичностью обеспечили широкое внедрение ее в различные отрасли науки. А появление компьютеров, являющихся инструментами обработки информации, и развитие ГИС значительно помогли географам и многим другим, использующим пространственные данные, в их работе. Эти новые инструменты широко внедряются в географическую науку и практику.

В результате, можно сказать, что весь этот разнообразный комплекс новейших методов исследования географической оболочки значительно способствует продвижению знаний о процессах, протекающих в ней, способствует развитию теории географической науки, познанию законов, управляющих структурой и динамикой оболочки. Это дает возможность географической науке подняться на уровень выше, на более высокую ступень развития.

По теме:  Климат при гепатите с

Источник

Структура рисунков аэрокосмических изображений, ее связь с географическими особенностями местности.

Любое аэрокосмическое изображение, независимо от того, с использованием каких технических средств и в каком спектральном диапазоне оно получено, представляет собой сочетание точек, линий и участков различных размеров и фототонов, то есть рисунок. При фотографировании местности эти детали и элементы снимка отобразят яркостные различия объектов местности в световом диапазоне. При теплолокации на снимках отобразятся температурные различия и др.

Аэрокосмические методы в географии — это изучение закономерностей строения и развития географической оболочки Земли в целом или составляющих ее комплексов либо компонентов визуально с летательных аппаратов или путем дешифрирования снимков[6]. Аэрокосмические методы делятся на две основные группы: во-первых, визуальные исследования, включающие также глазомерную и полуинструментальную графическую съемки, и, во-вторых, различные виды съемок. Велика роль аэрокосмических снимков при изучении и картографировании ландшафтов. Результаты комплексного картографирования современных ландшафтов показывают высокую достоверность, точность, хорошую сопоставимость ландшафтных и отраслевых карт и их уникальное значение для прикладных ландшафтных исследований[6]. Особенно широко аэрокосмические методы используются в картографических исследованиях. Здесь выделяются два направления. В первом — аэрокосмические снимки используются для изготовления карт, что составляет основу аэрокосмического картографирования, в частности аэрофототопографии, космического картографирования. Во втором — аэрокосмический метод сочетается с картографическим методом географических исследований. Интеграция аэрокосмического и картографического методов в единый картографо-аэрокосмический метод исследований базируется на формировании знаний как через снимок, и затем карту, так и по параллельной схеме, в которой для познания объекта используются одновременно и снимок и карта, что служит их дальнейшему теоретическому обогащению и повышению практической значимости.

Разрешающая способность и разрешение снимков. Информационные свойства снимков.

Разрешающей способностью изображения (resolution) принято считать количество пикселов изображения на линейный дюйм, например 72 пиксела на дюйм (pixelperinch — ppi), или размеры изображения, выраженные в пикселах, например, 640 х 480 пикселов.

Разрешение изображения напрямую связано с размером файла, так как каждый пиксел занимает определенный объем памяти, например для черно-белого изображения — 1 бит, для режима градации серого — 8 бит, цветное изображение в RGB — 24 бита. Зная разрешение, можно подсчитать размер файла изображения. Для этого нужно: количество пикселов изображения умножить на объем памяти, занимаемый одним пикселом, и разделить все это на 8. Например: 300 х 300 х 24 : 8 = 270 000.

На каждом этапе обработки изображения важна разрешающая способность. Качество получаемого изображения находится в прямой зависимости от его разрешающей способности. Чем выше разрешение, тем выше качество изображения. Но, как мы уже выяснили, чем выше разрешение, тем больший объем памяти вовлекается в процесс обработки изображения и тем медленнее будет идти сам процесс работы над ним. Чаще всего компьютерным художникам приходится пользоваться следующей тактикой. Работа над проектом ведется в версии с низким разрешением, что получается значительно быстрее.

Источник

Аэрокосмические снимки как источник географической информации

Гипермаркет знаний>>География>>География 6 класс>> Аэрокосмические и геоинформационные источники. Статистические материалы

§ 4. Аэрокосмические и геоинформационные источники. Статистические материалы

Аэрофотосъемка. В настоящее время наряду с топографическими картами для изучения местности и ориентирования на ней широко используются фотоснимки, получаемые путем фотографирования поверхности Земли с самолета или какого-либо другого летательного аппарата. Такие изображения называются аэрофотоснимками. Процесс фотографирования земной поверхности с самолета называется аэрофотосъемкой, или воздушным фотографированием.

Промежуток времени от начала фотографирования местности до получения аэрофотоснимков обычно сравнительно небольшой, поэтому по аэрофотоснимкам можно получить более свежую и достоверную информацию о местности, чем по топографической карте. Преимущество аэрофотоснимка по сравнению с картой заключается еще и в том, что на нем получается подробное изображение всего, что имелось на местности в момент фотографирования, включая и временно находящиеся на ней различные предметы (объекты).

По теме:  Прибор определяющий уровень радиации на местности

Космическая съемка Земли. Сегодня все более активно используются данные о нашей планете, получаемые с искусственных спутников и пилотируемых космических аппаратов. Они называются данными дистанционного (удаленного) зондирования. Этот, широко применяемый в наши дни термин — синоним словосочетаний «изображение Земли из космоса» и «космические снимки Земли». К основным достоинствам дистанционного зондирования можно отнести возможность мониторинга (от лат. monitor — тот, кто предупреждает), или регулярных наблюдений за динамикой географических процессов.

За последние годы развитие компьютерных технологий и геоинформационных систем (ГИС) привело к тому, что данные спутникового мониторинга находят применение в самых разных областях — от сельского хозяйства до геоэкологии. Это позволяет оперативно реагировать на отрицательные изменения в окружающей среде и предупреждать опасные явления и процессы.

Одно из известных направлений использования космических снимков — метеорология. Возможности дистанционных методов зондирования позволили вести наблюдение за атмосферой на обширных пространствах в режиме реального времени и отслеживать формирование облаков (определять тип и мощность облачности, получать ее стереоскопическое изображение, измерять температуру воздуха и т.д.). Слежение за формированием и передвижением циклонов дает возможность заблаговременно прогнозировать опасные для человека явления природы (ураганы, смерчи, торнадо) и тем самым предупреждать их тяжелые последствия.

Космическая съемка незаменима при составлении метеопрогнозов, прогнозировании опасных атмосферных явлений, при исследовании радиационного баланса Земли. Она позволяет определять местоположение локальных источников загрязнения (теплоэлектростанций, целлюлозно-бумажных комбинатов и др.) и вести наблюдение за экологической ситуацией в районах захоронения токсичных отходов.

Важное практическое направление использования космических снимков — учет природных ресурсов. Дистанционное зондирование значительно упростило оценку их запасов, особенно в труднодоступных районах. Так, при изучении лесных ресурсов стало проще производить подсчет площадей лесов, — определять тип лесонасаждений и возраст деревьев, доминирующие породы и объем биомассы. Упростилось не только картографирование лесных массивов, но и контроль за их сохранностью, включая контроль за рубками, границами водоохранных зон и т. п.

Природные стихийные бедствия, такие как наводнения, лесные пожары, цунами, ураганы, землетрясения, извержения вулканов, торнадо и другие, наносят огромный экономический ущерб и приводят к человеческим жертвам. Использование дистанционных методов зондирования позволяет прогнозировать возникновение чрезвычайных ситуаций и локализировать опасные явления на начальных стадиях развития, и значит — уменьшить возможный ущерб.

Дистанционное зондирование применяется для оценки минеральных ресурсов: оно позволяет исследовать условия залегания горных пород и оценивать объемы предполагаемых месторождений. Космические снимки очень эффективны при поиске месторождений нефти и природного газа, при освоении альтернативных источников энергии, таких как геотермальная, солнечная и ветровая, а также при строительстве и эксплуатации атомных и гидроэлектростанций.

Космические снимки используют для изучения водных ресурсов и биоресурсов, в частности для определения запасов фитопланктона и рыбного поголовья, для исследования ареалов обитания различных видов животных.

Применение космических снимков в сельском хозяйстве позволяет повысить эффективность использования земель, так как по снимкам хорошо видны районы с угнетенной растительностью и можно определить, куда и сколько нужно внести удобрений, где и как часто производить полив, когда можно собирать урожай.

При исследовании морских акваторий космические снимки позволяют эффективно исследовать ледовую обстановку, осуществлять контроль над рыболовством. Кроме того, они дают возможность проводить мониторинг температурного режима и солености воды, изучать изменения береговой линии шельфа. Особенно заинтересованы в дистанционном зондировании морских акваторий научно-исследовательские организации и компании, занимающиеся добычей морепродуктов и полезных ископаемых в шельфовой зоне и обеспечивающие судоходство и навигацию.

Космические снимки позволяют оценить запасы снега и льда, что вместе с анализом температурных показателей дает возможность прогнозировать скорость таяния снега и таким образом предупреждать наводнения. Например, обнаружение и локализация ледяных заторов на сибирских реках позволяет избежать экстремального подъема уровня воды и связанных с ним бедствий.

Система спутникового мониторинга помогает своевременно обнаруживать очаги загрязнения водных объектов и почв, воздуха и снежного покрова, мест разрывов нефте- и газопроводов, оценивать выбросы загрязняющих веществ промышленными предприятиями.

По теме:  Зональность географической оболочки 7 класс презентация домогацких таблица

Для дешифрирования космического снимка в первую очередь необходимо определить, какой объект изображен на снимке конкретной территории. Затем — найти объект (явление) на карте, определить его географическое положение, качественные и количественные характеристики.

Географические информационные системы.

Методы работы с данными постоянно совершенствуются, и теперь уже привычно видеть необходимую информацию, графики, чертежи, схемы, фотографии на экране компьютера. При помощи компьютера создаются и изменяются, извлекаются, анализируются и обрабатываются данные. В этих условиях компьютер оказывает помощь и в работе с географической картой.

Принципиально новый подход в работе с пространственными данными в последние десятилетия связан с возникновением географических информационных систем.

Географическая информационная система (ГИС) — это компьютерная система, позволяющая показывать необходимые данные на электронной карте. Карты, созданные с помощью ГИС, — это карты нового поколения. На карты ГИС можно нанести не только географические, но и статистические, технические и многие другие виды данных и применять к ним разнообразные аналитические операции. ГИС обладает уникальной способностью выявлять скрытые взаимосвязи и тенденции, которые трудно заметить, используя привычные бумажные карты.

Электронная карта, созданная в ГИС, поддерживается мощным арсеналом аналитических средств, богатым инструментарием создания и редактирования объектов, а также базами данных, специализированными устройствами сканирования, печати и другими техническими решениями, средствами Интернет, космическими снимками и информацией со спутников.

Статистические материалы — один из основных источников географической информации. Статистика — это наука, изучающая разнообразные явления и процессы с целью учета и выявления закономерностей их развития при помощи статистических показателей. К статистическим показателям относятся абсолютные и относительные величины, а также различные коэффициенты.

Абсолютные величины имеют осведомительное значение и показывают размеры географических явлений. Например, Россия располагает самой большой территорией в мире — более 17 млн кв. км, что почти вдвое превышает территорию таких стран, как Китай или США.

Относительная величина выражает результат сопоставления статистических показателей друг с другом. Они позволяют обнаружить определенные закономерные изменения природных и социальных явлений. Примером относительной величины может служить показатель плотности населения.

Коэффициенты — показатели, отражающие характерные особенности отдельных явлений, например коэффициент облесенности территории или коэффициент естественного прироста населения.

Для того чтобы научиться работать со статистическими таблицами, надо в первую очередь представлять, как они организованы. Статистическая таблица представляет собой систему вертикальных и горизонтальных граф, снабженных заголовками и заполненных в определенном порядке цифровыми данными. В ней располагаются статистические данные, необходимые для характеристики изучаемого географического явления и его составных частей.

Статистические материалы могут быть представлены не только в статистических таблицах, но и в наглядной форме: в диаграммах, графиках, на картах и картосхемах.

Очевидно, что статистическая информация быстро устаревает и требуется ее постоянное обновление. В этом могут помочь образовательные ресурсы Интернет.

Вот перечень некоторых образовательных ресурсов Интернет, полезных для поиска дополнительной и обновленной геоинформации:

http:/ /www.mineral.ru — Центр информации о минеральных ресурсах России и мира. Каталог ссылок на информационные сайты и сайты, посвященные отдельным видам полезных ископаемых.
http:/ /www.sci.aha.ru/map.htm — DataGraf.Net — Картографическая система On-Line.
http:/ /www.worldtimezone.com — Справочник: «Карта часовых поясов в различных странах мира».
http:/ /wikipedia.org — Свободная энциклопедия по различным областям знаний, в том числе и по географии. Содержит обновленные статистические данные по странам мира и России.
http:/ /demoscope.ru — Электронная версия бюллетеня «Население и общество».

Содержит демографические базы данных по странам мира и России, позволяет построить карты по отдельным демографическим показателям.

Максаковский В.П., Петрова Н.Н., Физическая и экономическая география мира. — М.:Айрис-пресс, 2010. — 368с.:ил.

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Источник

ТОПоГИС
Adblock
detector